J Colloid Interface Sci
October 2023
Smectite clay minerals have an outsize impact on the response of clay-rich media to common stimuli, such as hydration and ion exchange, motivating extensive effort to understand behaviors resulting from these processes such as swelling and exfoliation. Smectites are common and historic systems for investigating colloidal and interfacial phenomena, with two swelling regimes commonly identified across myriad clays: osmotic swelling at high water activity and crystalline swelling at low water activity. However, no current swelling model seamlessly spans the full ranges of water, salt and clay content encountered in natural or engineered settings.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2023
The gram-positive soil bacterium, Arthrobacter nicotianae, uses multiple organic acid functional groups to adsorb lanthanides onto its cell surface. At relevant soil pH conditions of 4.0-6.
View Article and Find Full Text PDFSeveral billion metric tons per year of durable carbon dioxide removal (CDR) will be needed by mid-century to prevent catastrophic climate warming, and many new approaches must be rapidly scaled to ensure this target is met. Geologically permanent sequestration of carbon dioxide (CO) in carbonate minerals-carbon mineralization-requires two moles of alkalinity and one mole of a CO-reactive metal such as calcium or magnesium per mole of CO captured. Chemical weathering of geological materials can supply both ingredients, but weathering reactions must be accelerated to achieve targets for durable CDR.
View Article and Find Full Text PDFRare earth elements (REEs) are indispensable components of many green technologies and of increasing demand globally. However, refining REEs from raw materials using current technologies is energy intensive and enviromentally damaging. Here, we describe the development of a novel biosorption-based flow-through process for selective REE recovery from electronic wastes.
View Article and Find Full Text PDFIon exchange in nanoporous clay-rich media plays an integral role in water, nutrient, and contaminant storage and transport. In montmorillonite (MMT), a common clay mineral in soils, sediments, and muds, the swelling and collapse of clay particles through the addition or removal of discrete molecular layers of water alters cation exchange selectivities in a poorly understood way. Here, we show that ion exchange is coupled to the dynamic delamination and restacking of clay layers, which creates a feedback between the hydration state of the exchanging cation and the composition of the clay interlayer.
View Article and Find Full Text PDFThe increasing demand for rare earth elements (REEs) in the modern economy motivates the development of novel strategies for cost-effective REE recovery from nontraditional feedstocks. We previously engineered E. coli to express lanthanide binding tags on the cell surface, which increased the REE biosorption capacity and selectivity.
View Article and Find Full Text PDFHypothesis: Calcium carbonate nucleation is often a complex and multistep process that is difficult to follow in situ. The time-resolved electrochemical and electrophoretic methods can provide a new insight into the nucleation pathway.
Experiments: Here, we used a combination of speciation calculations with time-resolved electrophoretic and potentiometric methods to monitor calcium carbonate precipitation from a slightly supersaturated solution.
Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones.
View Article and Find Full Text PDFCesium-137 is a major byproduct of nuclear energy generation and is environmentally threatening due to its long half-life and affinity for naturally occurring micaceous clays. Recent experimental observations of illite and phlogopite mica indicate that Cs is capable of exchanging with K bound in the anhydrous interlayers of layered silicates, forming sharp exchange fronts, leading to interstratification of Cs- and K-illite. We present here a coarse-grained (CG) model of the anhydrous illite interlayer developed using iterative Boltzmann inversion that qualitatively and quantitatively reproduces features of a previously proposed feedback mechanism of ion exchange.
View Article and Find Full Text PDFWhen driven out of equilibrium, many diverse systems can form complex spatial and dynamical patterns, even in the absence of attractive interactions. Using kinetic Monte Carlo simulations, we investigate the phase behavior of a binary system of particles of dissimilar size confined between semiflexible planar surfaces, in which the nanoconfinement introduces a non-local coupling between particles, which we model as an activation energy barrier to diffusion that decreases with the local fraction of the larger particle. The system autonomously reaches a cyclical non-equilibrium state characterized by the formation and dissolution of metastable micelle-like clusters with the small particles in the core and the large ones in the surrounding corona.
View Article and Find Full Text PDFInsights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones.
View Article and Find Full Text PDFThe use of biomass for adsorption of rare earth elements (REEs) has been the subject of many recent investigations. However, REE adsorption by bioengineered systems has been scarcely documented, and rarely tested with complex natural feedstocks. Herein, we engineered E.
View Article and Find Full Text PDFEnviron Sci Technol
January 2017
The mobility of radiocesium in the environment is largely mediated by cation exchange in micaceous clays, in particular Illite-a non-swelling clay mineral that naturally contains interlayer K and has high affinity for Cs. Although exchange of interlayer K for Cs is nearly thermodynamically nonselective, recent experiments show that direct, anhydrous Cs-K exchange is kinetically viable and leads to the formation of phase-separated interlayers through a mechanism that remains unclear. Here, using classical atomistic simulations and density functional theory calculations, we identify a molecular-scale positive feedback mechanism in which exchange of the larger Cs for the smaller K significantly lowers the migration barrier of neighboring K, allowing exchange to propagate rapidly once initiated at the clay edge.
View Article and Find Full Text PDFThe workability of fresh Portland cement (PC) concrete critically depends on the reaction of the cubic tricalcium aluminate (CA) phase in Ca- and S-rich pH >12 aqueous solution, yet its rate-controlling mechanism is poorly understood. In this article, the role of adsorption phenomena in CA dissolution in aqueous Ca-, S-, and polynaphthalene sulfonate (PNS)-containing solutions is analyzed. The zeta potential and pH results are consistent with the isoelectric point of CA occurring at pH ∼12 and do not show an inversion of its electric double layer potential as a function of S or Ca concentration, and PNS adsorbs onto CA, reducing its zeta potential to negative values at pH >12.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2017
The charged surfaces of micaceous minerals, especially illite, regulate the mobility of the major radioisotopes of Cs (Cs, Cs, Cs) in the geosphere. Despite the long history of Cs adsorption studies, the nature of the illite surface sites remains incompletely understood. To address this problem, we present atomistic simulations of Cs competition with Na for three candidate illite adsorption sites - edge, basal plane, and interlayer.
View Article and Find Full Text PDF