Moose are a popular species with recreationists but understudied acoustically. We used publicly available videos to characterize and quantify the vocalizations of moose in New Hampshire separated by age/sex class. We found significant differences in peak frequency, center frequency, bandwidth, and duration across the groups.
View Article and Find Full Text PDFDistress or alarm calls are vocalizations made when animals are in stressful situations or faced with a predator. Squirrels (Sciuridae) are known for being very vocal; however, most studies on alarm vocalizations are limited to ground squirrels. We investigated the acoustic behavior of the arboreal fox squirrel (Sciurus niger) under different conditions.
View Article and Find Full Text PDFAlthough echolocation is classically associated with bats and dolphins, many animals produce ultrasonic and/or click-like signals to potentially navigate their environment. Shrews (Soricidae) are thought to rely on ultrasonic signals for echo-orientation, producing both ultrasonic click-like signals and tonal twittering signals. Recently, the role of ultrasonic clicks in shrew echo-orientation has been questioned, as these clicks have been proposed to be artifacts of shrews moving throughout their environment.
View Article and Find Full Text PDFOne of the biggest challenges with species conservation is collecting accurate and efficient information on population sizes, especially from species that are difficult to count. Bats worldwide are declining due to disease, habitat destruction, and climate change, and many species lack reliable population information to guide management decisions. Current approaches for estimating population sizes of bats in densely occupied colonies are time-intensive, may negatively impact the population due to disturbance, and/or have low accuracy.
View Article and Find Full Text PDFChorusing male bullfrogs naturally vary the number of modulations within their advertisement call notes. A field playback experiment investigated whether these variations affect males' evoked vocal responses. Vocal responses were quantified manually and automatically by quantifying acoustic energy.
View Article and Find Full Text PDFCollective behaviours are widely assumed to confuse predators, but empirical support for a confusion effect is often lacking, and its importance must depend on the predator's targeting mechanism. Here we show that Swainson's Hawks Buteo swainsoni and other raptors attacking swarming Mexican Free-tailed Bats Tadarida brasiliensis steer by turning towards a fixed point in space within the swarm, rather than by using closed-loop pursuit of any one individual. Any prey with which the predator is on a collision course will appear to remain on a constant bearing, so target selection emerges naturally from the geometry of a collision.
View Article and Find Full Text PDFPassive acoustics provides a powerful method for localizing vocalizing animals and estimating species abundance. A passive acoustics method previously used to census dense populations of flying bats is applied here to estimate chorusing activity of male bullfrogs vocalizing against anthropogenic noise. There are significant links between manual counts of the numbers of advertisement call notes and automatically detected notes and two measures of acoustic energy.
View Article and Find Full Text PDFFirst-year majors organismal biology courses are frequently taught as survey courses that promote memorization rather than synthesis of biological concepts. To address the shortcomings of this approach, we redesigned the organismal portion of our introductory biology curriculum to create a "Foundations of Form and Function" course. Foundations of Form and Function introduces different organismal forms and focuses on the relationship between those forms and the execution of key physiological functions.
View Article and Find Full Text PDFAggregation can reduce an individual's predation risk, by decreasing predator hunting efficiency or displacing predation onto others. Here, we explore how the behaviors of predator and prey influence catch success and predation risk in Swainson's hawks attacking swarming Brazilian free-tailed bats on emergence. Lone bats including stragglers have a high relative risk of predation, representing ~5% of the catch but ~0.
View Article and Find Full Text PDFSource separation is an important step to study signals that are not easy or possible to record individually. Common methods such as deep clustering, however, cannot be applied to signals of an unknown number of sources and/or signals that overlap in time and/or frequency-a common problem in bioacoustic recordings. This work presents an approach, using a supervised learning framework, to parse individual sources from a spectrogram of a mixture that contains a variable number of overlapping sources.
View Article and Find Full Text PDFDuring nightly foraging activity, echolocating bats drink by flying low over the water surface and dipping the lower jaw while avoiding further bodily contact with the water. This task poses different sensorimotor challenges than flying in the open to forage for insects. Of interest is how bats adjust the timing of their echolocation pulses to accommodate the surrounding scene, from the progressively nearer water surface itself to objects at longer distances.
View Article and Find Full Text PDFEcholocating bats and odontocetes face the potential challenge of acoustic interference from neighbors, or sonar jamming. To counter this, many bat species have adapted jamming avoidance strategies to improve signal detection, but any such avoidance strategies in dolphins is unknown. This study provides an investigation into whether dolphins modify echolocation behavior during jamming scenarios.
View Article and Find Full Text PDFA Gram-stain-positive, aerobic bacterium, TB-66, was isolated from a pile of bat guano in a cave of New Mexico, USA. On the basis of 16S rRNA gene sequence similarity comparisons, strain TB-66grouped together with Filibacter limicola showing a 16S rRNA gene sequence similarity of 98.5 % to the type strain.
View Article and Find Full Text PDFSome bats re-enter their cave while using echolocation at very high speeds, but this behavior is poorly studied. Thermal imaging and an array of ultrasonic microphones were used to investigate the acoustic adaptations made during high-speed re-entry for single bats entering a cave. There was a significant overall effect between bat, distance to the ground, and its flight speed on pulse duration and interpulse interval (IPI).
View Article and Find Full Text PDFBats are known to be reservoirs for a variety of mammalian pathogens, including viruses, fungi, and bacteria. Many of the studies examining the microbial community inhabiting bats have investigated bacterial taxa found within specific bat tissues and isolated bat guano pellets, but relatively few studies have explored bacterial diversity within bat guano piles. In large bat caves, bat guano can accumulate over time, creating piles several meters deep and forming complex interactions with coprophagous organisms in a habitat with low light and oxygen.
View Article and Find Full Text PDFUnmanned aerial vehicles (UAVs) are rising in popularity for wildlife monitoring, but direct recordings of animal vocalizations have not yet been accomplished, likely due to the noise generated by the UAV. Echolocating bats, especially Tadarida brasiliensis, are good candidates for UAV recording due to their high-speed, high-altitude flight. Here, we use a UAV to record the signals of bats during morning roost re-entry.
View Article and Find Full Text PDFEcholocating bats can rapidly modify frequency modulation (FM) curvatures of their calls when facing challenging echolocation tasks. Frequency parameters, such as start/end/peak frequency, have often been extracted from the time-frequency domain to study the call variation. Even though this kind of signal investigation method reveals important findings, these approaches to analyze bat echolocation calls use bulk parameters, which hide subtleties in the call structure that may be important to the bat.
View Article and Find Full Text PDFBroadband active sonar systems estimate range from time delay and velocity from Doppler shift. Relatively little attention has been paid to how the received echo spectrum encodes information about the bearing of an object. This letter derives the bearing Fisher Information encoded in the frequency dependent transmitter beampattern.
View Article and Find Full Text PDFThe decline of bats demands more widespread monitoring of populations for conservation and management. Current censusing methods are either prone to bias or require costly equipment. Here, we report a new method using passive acoustics to determine bat count census from overall acoustic amplitude of the emerging bat stream.
View Article and Find Full Text PDFThe echolocation system of the Risso's dolphin (Grampus griseus) remains poorly studied compared to other odontocete species. In this study, echolocation signals were recorded from a stationary Risso's dolphin with an array of 16 hydrophones and the two-dimensional beam shape was explored using frequency-dependent amplitude plots. Click source parameters were similar to those already described for this species.
View Article and Find Full Text PDFThe odontocete sound production system is complex and composed of tissues, air sacs and a fatty melon. Previous studies suggested that the emitted sonar beam might be actively focused, narrowing depending on target distance. In this study, we further tested this beam focusing hypothesis in a false killer whale.
View Article and Find Full Text PDFBats perform high-resolution echolocation by comparing temporal and spectral features of their transmitted pulses to the received echoes. In complex environments with moving prey, dynamically adapting the transmitted pulses can increase the probability of successful target representation and interception. This study further investigates the adaptive vocal-motor strategies of big brown bats (Eptesicus fuscus).
View Article and Find Full Text PDFEcholocating animals adjust the transmit intensity and receive sensitivity of their sonar in order to regulate the sensation level of their echoes; this process is often termed automatic gain control. Gain control is considered not to be under the animal's cognitive control, but previous investigations studied animals ensonifying targets or hydrophone arrays at predictable distances. To test whether animals maintain gain control at a fixed level in uncertain conditions, we measured changes in signal intensity for a bottlenose dolphin (Tursiops truncatus) detecting a target at three target distances (2.
View Article and Find Full Text PDFMeasurements of the transmit beam patterns emitted by echolocating bats have previously been limited to cross-sectional planes or averaged over multiple signals using sparse microphone arrays. To date, no high-resolution measurements of individual bat transmit beams have been reported in the literature. Recent studies indicate that bats may change the time-frequency structure of their calls depending on the task, and suggest that their beam patterns are more dynamic than previously thought.
View Article and Find Full Text PDF