Background: Machine learning (ML) models are emerging at a rapid pace in orthopaedic imaging due to their ability to facilitate timely diagnostic and treatment decision making. However, despite a considerable increase in model development and ML-related publications, there has been little evaluation regarding the quality of these studies. In order to successfully move forward with the implementation of ML models for diagnostic imaging in orthopaedics, it is imperative that we ensure models are held at a high standard and provide applicable, reliable and accurate results.
View Article and Find Full Text PDFRational: Social determinants of health (SDOH) are being considered more frequently when providing orthopaedic care due to their impact on treatment outcomes. Simultaneously, prognostic machine learning (ML) models that facilitate clinical decision making have become popular tools in the field of orthopaedic surgery. When ML-driven tools are developed, it is important that the perpetuation of potential disparities is minimized.
View Article and Find Full Text PDF