Publications by authors named "Laura Musazzi"

Ghrelin is a gut peptide hormone associated with feeding behavior and energy homeostasis. Acylated ghrelin binds to the growth hormone secretagogue receptor 1a subtype (GHS-R1a) in the hippocampus, leading to GH release from the anterior pituitary. However, in recent years, ghrelin and its receptor have also been implicated in other processes, including the regulation of cardiomyocyte function, muscle trophism, and bone metabolism.

View Article and Find Full Text PDF

Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites.

View Article and Find Full Text PDF

Stress affects the brain and alters its neuroarchitecture and function; these changes can be severe and lead to psychiatric disorders. Recent evidence suggests that astrocytes and microglia play an essential role in the stress response by contributing to the maintenance of cerebral homeostasis. These cells respond rapidly to all stimuli that reach the brain, including stressors.

View Article and Find Full Text PDF

Major Depressive Disorder (MDD) is a highly debilitating disorder characterized by a persistent feeling of sadness and anhedonia. Traditional antidepressants have a delayed onset of action and lack of efficacy in up to one third of patients, leading to treatment resistant depression (TRD). Recent years have witnessed a revolutionary treatment of TRD with the introduction of the fast-acting antidepressant ketamine.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common age-related neurodegenerative disease characterized by memory loss and cognitive impairment. The causes of the disease are not well understood, as it involves a complex interaction between genetic, environmental, and epigenetic factors. SAMP8 mice have been proposed as a model for studying late-onset AD, since they show age-related learning and memory deficits as well as several features of AD pathogenesis.

View Article and Find Full Text PDF

Stress is a primary risk factor in the onset of neuropsychiatric disorders, including major depressive disorder (MDD). We have previously used the chronic mild stress (CMS) model of depression in male rats to show that CMS induces morphological, functional, and molecular changes in the hippocampus of vulnerable animals, the majority of which were recovered using acute subanesthetic ketamine in just 24 h. Here, we focused our attention on the medial prefrontal cortex (mPFC), a brain area regulating emotional and cognitive functions, and asked whether vulnerability/resilience to CMS and ketamine antidepressant effects were associated with molecular and functional changes in the mPFC of rats.

View Article and Find Full Text PDF

Frailty is a geriatric syndrome characterized by age-related decline in physiological reserves and functions in multiple organ systems, including the musculoskeletal, neuroendocrine/metabolic, and immune systems. Animal models are essential to study the biological basis of aging and potential ways to delay the onset of age-related phenotypes. Unfortunately, validated animal models of frailty are still lacking in preclinical research.

View Article and Find Full Text PDF

Stress is a major risk factor for psychiatric disorders. During and after exposure to stressors, the stress response may have pro- or maladaptive consequences, depending on several factors related to the individual response and nature of the stressor. However, the mechanisms mediating the long-term effects of exposure to stress, which may ultimately lead to the development of stress-related disorders, are still largely unknown.

View Article and Find Full Text PDF

Traumatic stress is the main environmental risk factor for the development of psychiatric disorders. We have previously shown that acute footshock (FS) stress in male rats induces rapid and long-lasting functional and structural changes in the prefrontal cortex (PFC), which are partly reversed by acute subanesthetic ketamine. Here, we asked if acute FS may also induce any changes in glutamatergic synaptic plasticity in the PFC 24 h after stress exposure and whether ketamine administration 6 h after stress may have any effect.

View Article and Find Full Text PDF

Stress is a primary risk factor for psychiatric disorders such as Major Depressive Disorder (MDD) and Post Traumatic Stress Disorder (PTSD). The response to stress involves the regulation of transcriptional programs, which is supposed to play a role in coping with stress. To evaluate transcriptional processes implemented after exposure to unavoidable traumatic stress, we applied microarray expression analysis to the PFC of rats exposed to acute footshock (FS) stress that were sacrificed immediately after the 40 min session or 2 h or 24 h after.

View Article and Find Full Text PDF

Stress represents a main risk factor for psychiatric disorders. Whereas it is known that even a single trauma may induce psychiatric disorders in humans, the mechanisms of vulnerability to acute stressors have been little investigated. In this study, we generated a new animal model of resilience/vulnerability to acute footshock (FS) stress in rats and analyzed early functional, molecular, and morphological determinants of stress vulnerability at tripartite glutamate synapses in the prefrontal cortex (PFC).

View Article and Find Full Text PDF

Stress is a key risk factor in the onset of neuropsychiatric disorders. The study of the mechanisms underlying stress response is important to understand the etiopathogenetic mechanisms and identify new putative therapeutic targets. In this context, microRNAs (miRNAs) have emerged as key regulators of the complex patterns of gene/protein expression changes in the brain, where they have a crucial role in the regulation of neuroplasticity, neurogenesis, and neuronal differentiation.

View Article and Find Full Text PDF

Stressful life events are considered major risk factors for the development of several psychiatric disorders, though people differentially cope with stress. The reasons for this are still largely unknown but could be accounted for by individual genetic variants, previous life events, or the kind of stressors. The human brain-derived neurotrophic factor (BDNF) Val66Met variant, which was found to impair intracellular trafficking and activity-dependent secretion of BDNF, has been associated with increased susceptibility to develop several neuropsychiatric disorders, although there is still some controversial evidence.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic mild stress (CMS) in rats is a widely used method to study depressive-like behaviors, revealing significant variability in how different protocols affect vulnerability to depression.
  • Altered dopamine (DA) signaling in the corticolimbic system likely contributes to these behaviors, with specific changes in synaptic plasticity observed in the medial prefrontal cortex (mPFC) of vulnerable rats.
  • Ketamine treatment appears to restore synaptic balance and counteracts chronic stress effects, highlighting its potential as an antidepressant and offering insights into the neurophysiological mechanisms of stress vulnerability.
View Article and Find Full Text PDF

Stress represents a major risk factor for psychiatric disorders, including post-traumatic stress disorder (PTSD). Recently, we dissected the destabilizing effects of acute stress on the excitatory glutamate system in the prefrontal cortex (PFC). Here, we assessed the effects of single subanesthetic administration of ketamine (10 mg/kg) on glutamate transmission and dendritic arborization in the PFC of footshock (FS)-stressed rats, along with changes in depressive, anxious, and fear extinction behaviors.

View Article and Find Full Text PDF

Frailty is an aging-related pathology, defined as a state of increased vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Extracellular microRNAs (miRNAs) were proposed as potential biomarkers of various disease conditions, including age-related pathologies. The primary objective of this study was to identify blood miRNAs that could serve as potential biomarkers and candidate mechanisms of frailty.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a debilitating psychiatric disorder, the third leading global cause of disability. Regarding aetiopathogenetic mechanisms involved in the onset of depressive disorders, the interaction between genetic vulnerability traits and environmental factors is believed to play a major role. Although much is still to be elucidated about the mechanisms through which the environment can interact with genetic background shaping the disease risk, there is a general agreement about a key role of epigenetic marking.

View Article and Find Full Text PDF

Frailty is an aging related condition, which has been defined as a state of enhanced vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Cognitive impairment is also frequent in older people, often accompanying frailty. Age is the main independent risk factor for both frailty and cognitive impairment, and compelling evidence suggests that similar age-associated mechanisms could underlie both clinical conditions.

View Article and Find Full Text PDF

Converging clinical and preclinical evidence demonstrates that depressive phenotypes are associated with synaptic dysfunction and dendritic simplification in cortico-limbic glutamatergic areas. On the other hand, the rapid antidepressant effect of acute ketamine is consistently reported to occur together with the rescue of dendritic atrophy and reduction of spine number induced by chronic stress in the hippocampus and prefrontal cortex of animal models of depression. Nevertheless, the molecular mechanisms underlying these morphological alterations remain largely unknown.

View Article and Find Full Text PDF

Glutamatergic transmission is widely implicated in neuropsychiatric disorders, and the discovery that ketamine elicits rapid-acting antidepressant effects by modulating α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) signaling has spurred a resurgence of interest in the field. This review explores agents in various stages of development for neuropsychiatric disorders that positively modulate AMPARs, both directly and indirectly. Despite promising preclinical research, few direct and indirect AMPAR positive modulators have progressed past early clinical development.

View Article and Find Full Text PDF

Anxiety disorders are common mental health diseases affecting up to 7% of people around the world. Stress is considered one of the major environmental risk factors to promote anxiety disorders through mechanisms involving epigenetic changes. Moreover, alteration in redox balance and increased reactive oxygen species (ROS) production have been detected in anxiety patients and in stressed-animal models of anxiety.

View Article and Find Full Text PDF
Article Synopsis
  • Depression is a serious mental health problem that affects many people around the world, and science is looking at ways to treat it better.
  • Researchers are studying special brain receptors called mGlu receptors, which might help create new antidepressants that work quickly.
  • While we know that these receptors can help make people feel better, we still need to learn more about how they work in the brain to understand their full potential for treatment.
View Article and Find Full Text PDF

Chronic constipation is one of the most prominent prodromal symptoms in Parkinson's disease (PD), and Lewy bodies, enriched with aggregated α-Synuclein (α-Syn), propagation from the gut into the brain has been proposed to play a key role in PD etiopathogenesis. BDNF (Brain-derived neurotrophic factor) and Netrin-1 promote both neuronal survival and regulate the gut functions. We hypothesize that C/EBPβ represses BDNF and Netrin-1 in peripheral nervous system and central nervous system, contributing to GI tract and brain malfunctions in PD.

View Article and Find Full Text PDF

The gene has been significantly associated with major depression in genetic studies. encodes for a cell adhesion molecule cleaved by the protease Adam10, thus activating Fgfr2 and promoting neuronal spine plasticity. We investigated whether antidepressants modulate the expression of genes belonging to pathway in Flinders sensitive line (FSL) rats, in a corticosterone-treated mouse model of depression, and in mouse primary neurons.

View Article and Find Full Text PDF

Converging clinical and preclinical evidence has shown that dysfunction of the glutamate system is a core feature of major depressive disorder. In this context, the N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has raised growing interest as fast acting antidepressant. Using the chronic mild stress (CMS) rat model of depression, performed in male rats, we aimed at analyzing whether hippocampal specific changes in subunit expression and regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or NMDA ionotropic receptors and in metabotropic glutamate receptors could be associated with behavioral vulnerability/resilience to CMS.

View Article and Find Full Text PDF