Publications by authors named "Laura Mugnaini"

An exhaustive description of the molecular recognition mechanism between a ligand and its biological target is of great value because it provides the opportunity for an exogenous control of the related process. Very often this aim can be pursued using high resolution structures of the complex in combination with inexpensive computational protocols such as docking algorithms. Unfortunately, in many other cases a number of factors, like protein flexibility or solvent effects, increase the degree of complexity of ligand/protein interaction and these standard techniques are no longer sufficient to describe the binding event.

View Article and Find Full Text PDF

Aims: To demonstrate the antiproliferative and pro-apoptotic activity of the novel pyrazolopyrimidine derivative multiple tyrosine kinase inhibitor CLM3, alone and in combination with SN-38 (the active metabolite of irinotecan), on endothelial and tumor cells and to show its mechanism of action.

Methods: Proliferation and apoptotic assays were performed on microvascular endothelial (HMVEC-d) and lung (A549) and thyroid cancer (8305C, TT) cell lines exposed to CLM3 and to the simultaneous combination with SN38 for 72h. Cell-based phospho-VEGFR-2, phospho-EGFR and phospho-RET inhibition assays were performed and ERK1/2 and Akt phosphorylation were quantified by ELISA kits.

View Article and Find Full Text PDF

Adenosine induces glioma cell proliferation by means of an antiapoptotic effect, which is blocked by cotreatment with selective A(3) AR antagonists. In this study, a novel series of N(2)-substituted pyrazolo[3,4-d]pyrimidines 2a-u was developed as highly potent and selective A(3) AR antagonists. The most performing compounds were derivatives 2a (R(1) = CH(3) and R(2) = COC(6)H(5); K(i) 334, 728, and 0.

View Article and Find Full Text PDF

A number of pyrazolo[3,4-d]pyrimidin-4-ones bearing either alkyl or arylalkyl substituents in position 2 of the nucleus were synthesized and tested for their ability to inhibit adenosine deaminase (ADA) from bovine spleen. The 2-arylalkyl derivatives exhibited excellent inhibitory activity, showing Ki values in the nanomolar/subnanomolar range. The most active compound, 1-(4-((4-oxo-4,5-dihydropyrazolo[3,4-d]pyrimidin-2-yl)methyl)phenyl)-3-(4-(trifluoromethyl)phenyl)urea, 14d, was tested in rats with colitis induced by 2,4-dinitrobenzenesulfonic acid to assess its efficacy to attenuate bowel inflammation.

View Article and Find Full Text PDF

2-Phenyl-pyrido[1,2-a]pyrimidin-4-one derivatives bearing a phenol or a catechol moiety in position 2 were tested as aldose reductase (ALR2) inhibitors and exhibited activity levels in the micromolar/submicromolar range. Introduction of a hydroxy group in position 6 or 9 gave an enhancement of the inhibitory potency (compare 18, 19, 28, and 29 vs 13 and 14). Lengthening of the 2-side chain to benzyl determined a general reduction in activity.

View Article and Find Full Text PDF

Adenosine modulates the immune system and inhibits inflammation via reduction of cytokine biosynthesis and neutrophil functions. Drugs able to prevent adenosine catabolism could represent an innovative strategy to treat inflammatory bowel disorders. In this study, the effects of 4-amino-2-(2-hydroxy-1-decyl)pyrazole[3,4-d]pyrimidine (APP; novel adenosine deaminase inhibitor), erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride (EHNA; standard adenosine deaminase inhibitor), and dexamethasone were tested in rats with colitis induced by 2,4-dinitrobenzenesulfonic acid (DNBS).

View Article and Find Full Text PDF

This study reports the synthesis of a number of 1- and 2-alkyl derivatives of the 4-aminopyrazolo[3,4-d]pyrimidine (APP) nucleus and their evaluation as inhibitors of ADA from bovine spleen. The 2-substituted aminopyrazolopyrimidines proved to be potent inhibitors, most of them exhibiting K(i) values in the nanomolar/subnanomolar range. In this series the inhibitory activity is enhanced with the increase in length of the alkyl chain, reaching a maximum with the n-decyl substituent.

View Article and Find Full Text PDF