Publications by authors named "Laura Meszaros-Beller"

The aim of this study was to design physics-preserving and precise surrogate models of the nonlinear elastic behaviour of an intervertebral disc (IVD). Based on artificial force-displacement data sets from detailed finite element (FE) disc models, we used greedy kernel and polynomial approximations of second, third and fourth order to train surrogate models for the scalar force-torque -potential. Doing so, the resulting models of the elastic IVD responses ensured the conservation of mechanical energy through their structure.

View Article and Find Full Text PDF

Inverse-dynamics (ID) analysis is an approach widely used for studying spine biomechanics and the estimation of muscle forces. Despite the increasing structural complexity of spine models, ID analysis results substantially rely on accurate kinematic data that most of the current technologies are not capable to provide. For this reason, the model complexity is drastically reduced by assuming three degrees of freedom spherical joints and generic kinematic coupling constraints.

View Article and Find Full Text PDF

The assessment of spinal posture is a difficult endeavour given the lack of identifiable bony landmarks for placement of skin markers. Moreover, potentially significant soft tissue artefacts along the spine further affect the accuracy of marker-based approaches. The objective of this proof-of-concept study was to develop an experimental framework to assess spinal postures by using three-dimensional (3D) ultrasound (US) imaging.

View Article and Find Full Text PDF

In spine research, two possibilities to generate models exist: generic (population-based) models representing the average human and subject-specific representations of individuals. Despite the increasing interest in subject specificity, individualisation of spine models remains challenging. Neuro-musculoskeletal (NMS) models enable the analysis and prediction of dynamic motions by incorporating active muscles attaching to bones that are connected using articulating joints under the assumption of rigid body dynamics.

View Article and Find Full Text PDF