The Salinas Valley in Monterey County, California, USA, is a highly productive agricultural region. Irrigation runoff containing pesticides at concentrations toxic to aquatic organisms poses a threat to aquatic ecosystems within local watersheds. This study monitored the effectiveness of a constructed wetland treatment system with a granulated activated carbon (GAC) filter installation at reducing pesticide concentrations and associated toxicity to Ceriodaphnia dubia, Hyalella azteca, and Chironomus dilutus.
View Article and Find Full Text PDFOrganism tolerance thresholds for emerging contaminants are vital to the development of water quality criteria. Acute (96-h) and chronic (10-day) effects thresholds for neonicotinoid pesticides clothianidin and thiamethoxam, and the carbamate pesticide methomyl were developed for the midge Chironomus dilutus to support criteria development using the UC Davis Method. Median lethal concentrations (LC50s) were calculated for acute and chronic exposures, and the 25% inhibition concentrations (IC25) were calculated for the chronic exposures based on confirmed chemical concentrations.
View Article and Find Full Text PDFPyrethroid and neonicotinoid pesticides control an array of insect pests in leafy greens, but there are concerns about the off-site movement and potential water quality impacts of these chemicals. Effective on-farm management practices can eliminate aquatic toxicity and pesticides in runoff. This project evaluated an integrated vegetated treatment system (VTS), including the use of polyacrylamide (PAM), for minimizing the toxicity of imidacloprid and permethrin pesticides in runoff.
View Article and Find Full Text PDF