Publications by authors named "Laura Matarredona"

Haloarchaea, known for their resilience to environmental fluctuations, require a minimum salt concentration of 10% (w/v) for growth and can survive up to 35% (w/v) salinity. In biotechnology, these halophiles have diverse industrial applications. This study investigates the tolerance responses of nine haloarchaea: Haloferax mediterranei, Haloferax volcanii, Haloferax gibbonsii, Halorubrum californiense, Halorubrum litoreum, Natrinema pellirubrum, Natrinema altunense, Haloterrigena thermotolerans and Haloarcula sinaiiensis, under various stressful conditions.

View Article and Find Full Text PDF
Article Synopsis
  • - PCB is a small molecule found in specific proteins that show promising fluorescent and medicinal uses in biomedicine and food industries, prompting interest in its production.
  • - This study focuses on optimizing the synthesis of PCB in a bacterial strain (BL21 DE3) by analyzing factors like temperature, inducer concentration, and shaking speed to enhance PCB output.
  • - The research identified optimal conditions for producing PCB and scaled the process to a 2 L bioreactor, revealing that factors like growth speed and stress can negatively impact pigment synthesis and lead to degradation.
View Article and Find Full Text PDF

Haloferax mediterranei, an extreme halophilic archaeon thriving in hypersaline environments, has acquired significant attention in biotechnological and biochemical research due to its remarkable ability to flourish in extreme salinity conditions. Transcription factors, essential in regulating diverse cellular processes, have become focal points in understanding its adaptability. This study delves into the role of the Lrp transcription factor, exploring its modulation of glnA, nasABC, and lrp gene promoters in vivo through β-galactosidase assays.

View Article and Find Full Text PDF

Haloarchaea, like many other microorganisms, have developed defense mechanisms such as universal stress proteins (USPs) to cope with environmental stresses affecting microbial growth. Despite the wide distribution of these proteins in Archaea, their biochemical characteristics still need to be discovered, and there needs to be more knowledge about them focusing on halophilic Archaea. Therefore, elucidating the role of USPs would provide valuable information to improve future biotechnological applications.

View Article and Find Full Text PDF

The Archaea domain consists of a heterogeneous group of microorganisms with unique physiological properties that occupy a wide variety of niches in nature. Haloferax mediterranei is an extremely halophilic archaeon classified in the Phylum Euryarchaeota, which requires a high concentration of inorganic salts for optimal growth. In haloarchaea, transcription factors play a fundamental role in an adequate adaptation to environmental and nutritional changes, preserving the survival and integrity of the organism.

View Article and Find Full Text PDF

is an extremely halophilic archaeon, able to live in hypersaline environments with versatile nutritional requirements, whose study represents an excellent basis in the field of biotechnology. The transcriptional machinery in combines the eukaryotic basal apparatus and the bacterial regulation mechanisms. However, little is known about molecular mechanisms of gene expression regulation compared with , particularly in Haloarchaea.

View Article and Find Full Text PDF

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.

View Article and Find Full Text PDF

Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionblbt44goducglmagnhtqu54gqhr3vvll): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once