Additively manufactured medical devices require proper surface finishing before their use to remove partially adhered particles and provide adequate surface roughness. The literature widely investigates regular lattice structures-mainly scaffolds with small pores to enhance osseointegration; however, only a few studies have addressed the impact of surface finishing on the dimensional deviation and the global and local mechanical responses of lattice samples. Therefore, the current research investigates the impact of biomedical surface finishing (i.
View Article and Find Full Text PDFWhile advanced imaging strategies have improved the diagnosis of bone-related pathologies, early signs of bone alterations remain difficult to detect. The Covid-19 pandemic has brought attention to the need for a better understanding of bone micro-scale toughening and weakening phenomena. This study used an artificial intelligence-based tool to automatically investigate and validate four clinical hypotheses by examining osteocyte lacunae on a large scale with synchrotron image-guided failure assessment.
View Article and Find Full Text PDFCurrently, the onset of bone damage and the interaction of cracks with the surrounding micro-architecture are still black boxes. With the motivation to address this issue, our research targets isolating lacunar morphological and densitometric effects on crack advancement under both static and cyclic loading conditions by implementing static extended finite element models (XFEM) and fatigue analyses. The effect of lacunar pathological alterations on damage initiation and progression is evaluated; the results indicate that high lacunar density considerably reduces the mechanical strength of the specimens, resulting as the most influencing parameter among the studied ones.
View Article and Find Full Text PDFThe growing health and economic burden of bone fractures, their intricate multiscale features and the existing knowledge gaps in the comprehension of micro-scale bone damage occurrence make fracture diagnosis a challenging issue. In this scenario, deep-learning and artificial intelligence embody the new frontier of healthcare system, by overcoming the subjectivity of clinicians in the analysis of medical images. However, the preliminary attempts in exploiting the power of machine learning algorithms such as neural networks are still limited to bone macro-scale, while there is an evident lack in their application to smaller scales, where damage starts nucleating.
View Article and Find Full Text PDFFrom the mechanical function of grabbing objects to the emotional aspect of gesturing, the functionality of human hands is fundamental for both physical and social survival. Therefore, the loss of one or both hands represents a devastating issue, exacerbated by long rehabilitation times and psychological treatments. Prosthetic arms represent an effective solution to provide concrete functional and esthetical support.
View Article and Find Full Text PDFThe complexity of torsional load, its three-dimensional nature, its combination with other stresses, and its disruptive impact make torsional failure prevention an ambitious goal. However, even if the problem has been addressed for decades, a deep and organized treatment is still lacking in the actual research landscape. For this reason, this review aims at presenting a methodical approach to address torsional issues starting from a punctual problem definition.
View Article and Find Full Text PDFThe comprehension of trabecular bone damage processes could be a crucial hint for understanding how bone damage starts and propagates. Currently, different approaches to bone damage identification could be followed. Clinical approaches start from dual X-ray absorptiometry (DXA) technique that can evaluate bone mineral density (BMD), an indirect indicator of fracture risk.
View Article and Find Full Text PDFThe solutions provided through natural evolution of living creatures serve as an ingenious source of inspiration for many technological and applicative fields. Along these lines, bone-inspired concepts lead to fascinating advances in product design, architecture and garments, thanks to the bone's exceptional combination of strength, toughness and lightness. Structural applications are inspired by the bone's ability to resist fracture under a large spectrum of forces, while the high surface area and pore connectivity of bone architecture present exciting opportunities from an aesthetic point of view.
View Article and Find Full Text PDFThe present work explores the effect of a stress relieving heat treatment on the microstructure, tensile properties and residual stresses of the laser powder bed fused AlSi9Cu3 alloy. In fact, the rapid cooling rates together with subsequent heating/cooling cycles occurred during layer by layer additive manufacturing production make low temperature heat treatments desirable for promoting stress relaxation as well as limited grain growth: this combination can offer the opportunity of obtaining the best compromise between high strength, good elongation to failure and limited residual stresses. The microstructural features were analysed, revealing that the high cooling rate, induced by the process, caused a large supersaturation of the aluminum matrix and the refinement of the eutectic structure.
View Article and Find Full Text PDFThe investigation of bone damage processes is a crucial point to understand the mechanisms of age-related bone fractures. In order to reduce their impact, early diagnosis is key. The intricate architecture of bone and the complexity of multiscale damage processes make fracture prediction an ambitious goal.
View Article and Find Full Text PDF