Removal of recalcitrant pollutants from water is a major challenge, to which the photoelectrocatalytic processes may be a solution. Applied potential plays a key role in the photocatalytic activity of the semiconductor. This paper investigated the effect of applied potential on the photoelectrocatalytic oxidation of 2,4-Dichlorophenoxyacetic acid (2,4-D) with TiO nanotubular anodes under solar light irradiation.
View Article and Find Full Text PDFAn experimental investigation is here presented on the photo-electrochemical removal of Methyl Orange (MO), selected as a model of the organic dyes, contained in wastewaters. The process is carried out in an electrochemical flow reactor, in which titania nanotubular electrode is irradiated with a simulated solar light. Design of Experiments (DOE) technique is used to plan the experimental campaign and investigate on the single and combined effects of applied current, electrolyte flow rate, and initial MO concentration, on the specific reaction rate.
View Article and Find Full Text PDFA simple and low-cost alternating current (AC)-based method, without electrolyte correction, is proposed (Electrochemical Impedance Spectroscopy (EIS)-Zero Gap Cell) for the determination of ohmic contribution of diaphragms. The effectiveness of the proposed methodology was evaluated by using a commercial Alkaline Water Electrolysis (AWE) diaphragm (Zirfon®). Furthermore, the results were compared with two conventional electrochemical methodologies for calculating the separator resistance, based on direct current (DC), and AC measurements, respectively.
View Article and Find Full Text PDF