Publications by authors named "Laura Mac-Daniel"

Background: Previous work has shown that the vaginal microbiome decreases in Lactobacillus predominance and becomes more diverse after menopause. It has also been shown that estrogen therapy restores Lactobacillus dominance in the vagina and that topical estrogen is associated with overactive bladder symptom improvement. We now know that the bladder contains a unique microbiome and that increased bladder microbiome diversity is associated with overactive bladder.

View Article and Find Full Text PDF

Vaccines that target the preerythrocytic phase of malaria hold great promise as elimination tools since they are the sole vaccines that can achieve sterile protection against a challenge. This chapter focuses on preerythrocytic stage vaccines based on live attenuated parasites. It first summarizes the main conclusions that have emerged from studies in rodents, which compared various parasite attenuation methods, and then presents the vaccination regimens that are currently being tested in humans.

View Article and Find Full Text PDF

Malaria infection begins when the sporozoite stage of Plasmodium is inoculated into the skin of a mammalian host through a mosquito bite. The highly motile parasite not only reaches the liver to invade hepatocytes and transform into erythrocyte-infective form. It also migrates into the skin and to the proximal lymph node draining the injection site, where it can be recognized and degraded by resident and/or recruited myeloid cells.

View Article and Find Full Text PDF

Plasmodium, the causative agent of malaria, initially multiplies inside liver cells and then in successive cycles inside erythrocytes, causing the symptoms of the disease. In this review, we discuss interactions between the extracellular and intracellular forms of the Plasmodium parasite and innate immune cells in the mammalian host, with a special emphasis on mononuclear phagocytes. We overview here what is known about the innate immune cells that interact with parasites, mechanisms used by the parasite to evade them, and the protective or detrimental contribution of these interactions on parasite progression through its life cycle and pathology in the host.

View Article and Find Full Text PDF

Malarial infection is initiated when the sporozoite form of the Plasmodium parasite is inoculated into the skin by a mosquito. Sporozoites invade hepatocytes in the liver and develop into the erythrocyte-infecting form of the parasite, the cause of clinical blood infection. Protection against parasite development in the liver can be induced by injection of live attenuated parasites that do not develop in the liver and thus do not cause blood infection.

View Article and Find Full Text PDF

CD8(+) T cells are specialized cells of the adaptive immune system capable of finding and eliminating pathogen-infected cells. To date it has not been possible to observe the destruction of any pathogen by CD8(+) T cells in vivo. Here we demonstrate a technique for imaging the killing of liver-stage malaria parasites by CD8(+) T cells bearing a transgenic T cell receptor specific for a parasite epitope.

View Article and Find Full Text PDF