Publications by authors named "Laura M Smoot"

A functional ANOVA analysis of the thermal dissociation of RNA hybridized to DNA microarrays was used to improve discrimination between two soil microbial communities. Following hybridization of in vitro transcribed 16S rRNA derived from uncontaminated and 2,4,6-trinitrotoluene contaminated soils to an oligonucleotide microarray containing group- and species-specific perfect match (PM) probes and mismatch (MM) variants, thermal dissociation was used to analyze the nucleic acid bound to each PM-MM probe set. Functional ANOVA of the dissociation curves generally discriminated PM-MM probe sets when Td values (temperature at 50% probe-target dissociation) could not.

View Article and Find Full Text PDF

The human oral cavity contains a complex microbial community that, until recently, has not been well characterized. Studies using molecular tools have begun to enumerate and quantify the species residing in various niches of the oral cavity; yet, virtually every study has revealed additional new species, and little is known about the structural dynamics of the oral microbial community or how it changes with disease. Current estimates of bacterial diversity in the oral cavity range up to 700 species, although in any single individual this number is much lower.

View Article and Find Full Text PDF

Brazilian purpuric fever is a severe vascular disease caused by an invasive clone of Haemophilus influenzae biogroup aegyptius, which normally causes self-limiting eye infections. A previous genome subtraction procedure resulted in the isolation of a DNA fragment, which encodes a putative IgA1 protease, specific to the F3031 Brazilian purpuric fever type strain. Cloning and sequencing of the entire F3031 iga1 gene showed that the subtracted DNA fragment encompasses the iga1 region encoding the active site and the cleavage specificity determinant of the protein, which are different from the cognate regions of the proteases produced by other H.

View Article and Find Full Text PDF

The pathogenesis of acute rheumatic fever (ARF) is poorly understood. We identified two contiguous bacteriophage genes, designated speL and speM, encoding novel inferred superantigens in the genome sequence of an ARF strain of serotype M18 group A streptococcus (GAS). speL and speM were located at the same genomic site in 33 serotype M18 isolates, and no nucleotide sequence diversity was observed in the 33 strains analyzed.

View Article and Find Full Text PDF

Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase).

View Article and Find Full Text PDF

Analysis of the genome sequence of a serotype M1 group A Streptococcus (GAS) strain identified a gene encoding a previously undescribed putative cell surface protein. The gene was cloned from a serotype M1 strain, and the recombinant protein was overexpressed in Escherichia coli and purified to homogeneity. The purified protein was associated with heme in a 1:1 stoichiometry.

View Article and Find Full Text PDF

PCR-based subtractive genome hybridization produced clones harboring inserts present in Brazilian purpuric fever (BPF) prototype strain F3031 but absent in noninvasive Haemophilus influenzae biogroup aegyptius isolate F1947. Some of these inserts have no matches in the GenBank database, while others are similar to genes encoding either known or hypothetical proteins. One insert represents a 2.

View Article and Find Full Text PDF

Acute rheumatic fever (ARF), a sequelae of group A Streptococcus (GAS) infection, is the most common cause of preventable childhood heart disease worldwide. The molecular basis of ARF and the subsequent rheumatic heart disease are poorly understood. Serotype M18 GAS strains have been associated for decades with ARF outbreaks in the U.

View Article and Find Full Text PDF

The human pathogen Streptococcus pyogenes secretes many proteins to the cell wall and extracellular environment that contribute to virulence. Rgg regulates the expression of several exoproteins including a cysteine protease (SPE B), a nuclease (MF-1), a putative nuclease (MF-3), and autolysin. The functional heterogeneity of Rgg-regulated exoproteins and the lack of a conserved regulatory motif in the promoter regions of the genes suggested that Rgg interacts with additional regulatory networks to influence gene expression.

View Article and Find Full Text PDF