Variation in the mutual responsiveness of social partners to each other can be reflected in behavioral suites that covary with neural activity in ways that track the salience or valence of interactions. Juvenile social isolation alters social behavior and neural activity during social interaction, but whether and how it alters the covariation between behavior and neural activity has not been as well explored. To address this issue, four classes of experimental subjects: isolated males, socially housed males, isolated females, and socially housed females, were paired with an opposite-sex social partner that had been socially housed.
View Article and Find Full Text PDFFront Hum Neurosci
January 2024
The context surrounding vocal communication can have a strong influence on how vocal signals are perceived. The serotonergic system is well-positioned for modulating the perception of communication signals according to context, because serotonergic neurons are responsive to social context, influence social behavior, and innervate auditory regions. Animals like lab mice can be excellent models for exploring how serotonin affects the primary neural systems involved in vocal perception, including within central auditory regions like the inferior colliculus (IC).
View Article and Find Full Text PDFAlthough male vocalizations during opposite- sex interaction have been heavily studied as sexually selected signals, the understanding of the roles of female vocal signals produced in this context is more limited. During intersexual interactions between mice, males produce a majority of ultrasonic vocalizations (USVs), while females produce a majority of human-audible squeaks, also called broadband vocalizations (BBVs). BBVs may be produced in conjunction with defensive aggression, making it difficult to assess whether males respond to BBVs themselves.
View Article and Find Full Text PDFDistinguishing between regular and irregular heartbeats, conversing with speakers of different accents, and tuning a guitar-all rely on some form of auditory learning. What drives these experience-dependent changes? A growing body of evidence suggests an important role for non-sensory influences, including reward, task engagement, and social or linguistic context. This review is a collection of contributions that highlight how these non-sensory factors shape auditory plasticity and learning at the molecular, physiological, and behavioral level.
View Article and Find Full Text PDFNeuromodulatory systems may provide information on social context to auditory brain regions, but relatively few studies have assessed the effects of neuromodulation on auditory responses to acoustic social signals. To address this issue, we measured the influence of the serotonergic system on the responses of neurons in a mouse auditory midbrain nucleus, the inferior colliculus (IC), to vocal signals. Broadband vocalizations (BBVs) are human-audible signals produced by mice in distress as well as by female mice in opposite-sex interactions.
View Article and Find Full Text PDFJuvenile social experience, such as social isolation, has profound effects on communicative behavior, including signal production and reception. In the current study, we explored responsiveness to the neuromodulator serotonin as a potential mechanistic link between early life social isolation and auditory processing. The serotonergic system is sensitive to social isolation in many brain regions including the inferior colliculus (IC), an auditory midbrain nucleus.
View Article and Find Full Text PDFPast social experience affects the circuitry responsible for producing and interpreting current behaviors. The social behavior network (SBN) is a candidate neural ensemble to investigate the consequences of early-life social isolation. The SBN interprets and produces social behaviors, such as vocalizations, through coordinated patterns of activity (functional connectivity) between its multiple nuclei.
View Article and Find Full Text PDFIn the auditory inferior colliculus (IC), serotonin reflects features of context including the valence of social interactions, stressful events, and prior social experience. However, within the dorsal raphe nucleus (DRN; B6 + B7), the source of serotonergic projections to the IC has not been resolved at the level of DRN subregions. Additionally, few studies have investigated which DRN subregions are engaged during naturalistic, sensory-driven social behaviors.
View Article and Find Full Text PDFFor social animals that communicate acoustically, hearing loss and social isolation are factors that independently influence social behavior. In human subjects, hearing loss may also contribute to objective and subjective measures of social isolation. Although the behavioral relationship between hearing loss and social isolation is evident, there is little understanding of their interdependence at the level of neural systems.
View Article and Find Full Text PDFThe serotonergic system has been widely studied across animal taxa and different functional networks. This modulatory system is therefore well positioned to compare the consequences of neuromodulation for sensory processing across species and modalities at multiple levels of sensory organization. Serotonergic neurons that innervate sensory networks often bidirectionally exchange information with these networks but also receive input representative of motor events or motivational state.
View Article and Find Full Text PDFMultimodal signaling is nearly ubiquitous across animal taxa. While much research has focused on male signal production contributing to female mate-choice or preferences, females often give their own multimodal signals during intersexual communication events. Multimodal signal components are often classified based on whether they contain redundant information (e.
View Article and Find Full Text PDFEarly-life experiences, including maternal deprivation and social isolation during adolescence, have a profound influence on a range of adult social behaviors. Post-weaning social isolation in rodents influences behavior in part through the alteration of neuromodulatory systems, including the serotonergic system. Of significance to social behavior, the serotonergic system richly innervates brain areas involved in vocal communication, including the auditory system.
View Article and Find Full Text PDFContext is critical to the adaptive value of communication. Sensory systems such as the auditory system represent an important juncture at which information on physiological state or social valence can be added to communicative information. However, the neural pathways that convey context to the auditory system are not well understood.
View Article and Find Full Text PDFPast social experience and current social context shape the responses of animals to social signals. The serotonergic system is one potential mechanism by which both experiential and contextual factors could be conveyed to sensory systems, such as the auditory system, for multiple reasons. ) Many features of the serotonergic system are sensitive to social experience.
View Article and Find Full Text PDFEarly-life social isolation has profound effects on adult social competence. This is often expressed as increased aggression or inappropriate displays of courtship-related behaviors. The social incompetence exhibited by isolated animals could be in part due to an altered ability to participate in communicatory exchanges.
View Article and Find Full Text PDFA fundamental task of sensory systems is to extract relevant social information from a range of environmental stimuli in the face of changing behavioral contexts and reproductive states. Neuromodulatory pathways that interact with such contextual variables are 1 mechanism for achieving this. In the mouse inferior colliculus (IC), a midbrain auditory region, the neuromodulator serotonin increases in females interacting with courting males, but events downstream of serotonin release have not been investigated.
View Article and Find Full Text PDFCues from social partners trigger the activation of socially responsive neuromodulatory systems, priming brain regions including sensory systems to process these cues appropriately. The fidelity with which neuromodulators reflect the qualities of ongoing social interactions in sensory regions is unclear. We addressed this issue by using voltammetry to monitor serotonergic fluctuations in an auditory midbrain nucleus, the inferior colliculus (IC), of male mice (Mus musculus) paired with females, and by concurrently measuring behaviors of both social partners.
View Article and Find Full Text PDFThe neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities.
View Article and Find Full Text PDFSeasonal variation in social behavior is often accompanied by seasonal variation in communication. In mammals, how seasonal environmental cues influence aggressive vocalizations remains underexplored. Photoperiod is the primary cue coordinating seasonal responses in most temperate zone animals, including Siberian hamsters (Phodopus sungorus), a species that undergoes reproductive inhibition and increased aggression in winter.
View Article and Find Full Text PDFHearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice.
View Article and Find Full Text PDFIn the face of changing behavioral situations, plasticity of sensory systems can be a valuable mechanism to facilitate appropriate behavioral responses. In the auditory system, the neurotransmitter serotonin is an important messenger for context-dependent regulation because it is sensitive to both external events and internal state, and it modulates neural activity. In male mice, serotonin increases in the auditory midbrain region, the inferior colliculus (IC), in response to changes in behavioral context such as restriction stress and social contact.
View Article and Find Full Text PDFFront Neural Circuits
October 2012
In addition to ascending, descending, and lateral auditory projections, inputs extrinsic to the auditory system also influence neural processing in the inferior colliculus (IC). These types of inputs often have an important role in signaling salient factors such as behavioral context or internal state. One route for such extrinsic information is through centralized neuromodulatory networks like the serotonergic system.
View Article and Find Full Text PDFThe laboratory mouse is an emerging model for context-dependent vocal signaling and reception. Mouse ultrasonic vocalizations are robustly produced in social contexts. In adults, male vocalization during courtship has become a model of interest for signal-receiver interactions.
View Article and Find Full Text PDFAcoustic trauma often results in permanent damage to the cochlea, triggering changes in processing within central auditory structures such as the inferior colliculus (IC). The serotonergic neuromodulatory system, present in the IC, is responsive to chronic changes in the activity of sensory systems. The current study investigated whether the density of serotonergic innervation in the IC is changed following acoustic trauma.
View Article and Find Full Text PDFNeurochemicals such as serotonin convey information about behavioral context to sensory processing. In the auditory system, serotonin modulates the responses of neurons in the inferior colliculus (IC) to acoustic stimuli, including communication vocalizations. Levels of extracellular serotonin in the IC can change rapidly in response to stressful situations such as social challenge and limited movement.
View Article and Find Full Text PDF