Publications by authors named "Laura M Boykin"

L. is an important fruit crop grown by small- and large-scale farmers in Kenya for local and export markets. However, its production is constrained by papaya ringspot disease (PRSD).

View Article and Find Full Text PDF

Cassava is a staple food crop in sub-Saharan Africa; it is a rich source of carbohydrates and proteins which currently supports livelihoods of more than 800 million people worldwide. However, its continued production is at stake due to vector-transmitted diseases such as Cassava mosaic disease and Cassava brown streak disease. Currently, the management and control of viral diseases in cassava relies mainly on virus-resistant cultivars of cassava.

View Article and Find Full Text PDF

Background: Herbaria are valuable sources of extensive curated plant material that are now accessible to genetic studies because of advances in high-throughput, next-generation sequencing methods. As an applied assessment of large-scale recovery of plastid and ribosomal genome sequences from herbarium material for plant identification and phylogenomics, we sequenced 672 samples covering 21 families, 142 genera and 530 named and proposed named species. We explored the impact of parameters such as sample age, DNA concentration and quality, read depth and fragment length on plastid assembly error.

View Article and Find Full Text PDF

In this case study we successfully teamed the PDQeX DNA purification technology developed by MicroGEM, New Zealand, with the MinION and MinIT mobile sequencing devices developed by Oxford Nanopore Technologies to produce an effective point-of-need field diagnostic system. The PDQeX extracts DNA using a cocktail of thermophilic proteinases and cell wall-degrading enzymes, thermo-responsive extractor cartridges and a temperature control unit. This closed system delivers purified DNA with no cross-contamination.

View Article and Find Full Text PDF

Cassava brown streak disease (CBSD) caused by (CBSV) and (UCBSV) is the main constraint to cassava ( Crantz) production in Mozambique. Using RT-PCR to amplify partial coat protein nucleotide sequences, we detected for the first time the occurrence of CBSV in two non-cassava perennial wild plant species: () Exell. and (Burm.

View Article and Find Full Text PDF

Common bean (.) is the primary source of protein and nutrients in the majority of households in sub-Saharan Africa. However, pests and viral diseases are key drivers in the reduction of bean production.

View Article and Find Full Text PDF

Plant viral diseases are one of the major limitations in legume production within sub-Saharan Africa (SSA), as they account for up to 100% in production losses within smallholder farms. In this study, field surveys were conducted in the western highlands of Kenya with viral symptomatic leaf samples collected. Subsequently, next-generation sequencing was carried out to gain insights into the molecular evolution and evolutionary relationships of Bean common mosaic necrosis virus (BCMNV) and Cowpea aphid-borne mosaic virus (CABMV) present within symptomatic common bean and cowpea.

View Article and Find Full Text PDF

A diagnostic survey was conducted in July 2017 in two northern districts of Zambia to investigate presence or absence of cassava brown streak disease (CBSD) and its causal viruses. In total, 29 cassava fields were surveyed and cassava leaf samples were collected from 116 plants (92 symptomatic and 24 nonsymptomatic). CBSD prevalence was approximately 79% (23 of 29) across fields.

View Article and Find Full Text PDF

The plastid genomes of four related carnivorous plants (Drosera regia, Drosera erythrorhiza, Aldrovanda vesiculosa, and Dionaea muscipula) were sequenced to examine changes potentially induced by the transition to carnivory. The plastid genomes of the Droseraceae show multiple rearrangements, gene losses, and large expansions or contractions of the inverted repeat. All the ndh genes are lost or nonfunctional, as well as in some of the species, clpP1, ycf1, ycf2 and some tRNA genes.

View Article and Find Full Text PDF

The tobacco whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex with members capable of inducing huge economic losses. Precise identification of members of this complex proves essential in managing existing populations and preventing new incursions. Despite records of serious outbreaks of this pest in Malaysia little is known about species status of B.

View Article and Find Full Text PDF

Sweet potato is a major food security crop within sub-Saharan Africa where 90% of Africa production occurs. One of the major limitations of sweet potato production are viral infections. In this study, we used a combination of whole genome sequences from a field isolate obtained from Kenya and those available in GenBank.

View Article and Find Full Text PDF
Article Synopsis
  • Whiteflies are major pests causing significant economic damage and food insecurity in developing countries, but extracting RNA from individual specimens has been challenging due to their size.
  • This study successfully developed a method to extract RNA from single whiteflies and sequenced the transcriptomes of four individual adults, revealing a large number of genetic sequences and identifying key endosymbionts.
  • The findings highlighted a specific genetic deletion in some samples that could affect protein structure, suggesting that this RNA extraction technique could enhance future research on small organisms and their interactions in ecosystems.
View Article and Find Full Text PDF

Members of the whitefly species complex cause millions of dollars of damage globally and are considered one of the world's most invasive species. They are capable of causing extensive damage to major vegetable, grain legume and fiber crops. All member of the species complex are morphologically identical therefore, data from the partial mitochondrial cytochrome oxidase subunit I (mtCOI) gene sequence has been used to identify the various species.

View Article and Find Full Text PDF

Cassava is the main staple food for over 800 million people globally. Its production in eastern Africa is being constrained by two devastating Ipomoviruses that cause cassava brown streak disease (CBSD); Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), with up to 100% yield loss for smallholder farmers in the region. To date, vector studies have not resulted in reproducible and highly efficient transmission of CBSV and UCBSV.

View Article and Find Full Text PDF

Whiteflies, (Gennadius) are major insect pests that affect many crops such as cassava, tomato, beans, cotton, cucurbits, potato, sweet potato, and ornamental crops. transmits viral diseases, namely cassava mosaic and cassava brown streak diseases, which are the main constraints to cassava production, causing huge losses to many small-scale farmers. The aim of this work was to determine the phylogenetic relationships among species in major cassava growing areas of Kenya.

View Article and Find Full Text PDF

Cassava is a major staple food for about 800 million people in the tropics and sub-tropical regions of the world. Production of cassava is significantly hampered by cassava brown streak disease (CBSD), caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The disease is suppressing cassava yields in eastern Africa at an alarming rate.

View Article and Find Full Text PDF

Combining whole genome data with previously obtained amplicon sequences has the potential to increase the resolution of phylogenetic analyses, particularly at low taxonomic levels or where recent divergence, rapid speciation or slow genome evolution has resulted in limited sequence variation. However, the integration of these types of data for large scale phylogenetic studies has rarely been investigated. Here we conduct a phylogenetic analysis of the whole chloroplast genome and two nuclear ribosomal loci for 65 Acacia species from across the most recent Acacia phylogeny.

View Article and Find Full Text PDF

Cassava brown streak disease is caused by two devastating viruses, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) which are frequently found infecting cassava, one of sub-Saharan Africa's most important staple food crops. Each year these viruses cause losses of up to $100 million USD and can leave entire families without their primary food source, for an entire year. Twelve new whole genomes, including seven of CBSV and five of UCBSV were uncovered in this research, doubling the genomic sequences available in the public domain for these viruses.

View Article and Find Full Text PDF

The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), vector of citrus greening disease pathogen, Huanglongbing (HLB), is considered the most serious pest of citrus in the world. Prior molecular based studies have hypothesized a link between the D. citri in Iran and the USA (Florida).

View Article and Find Full Text PDF

Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes.

View Article and Find Full Text PDF

The study of population genetics among the Bemisia tabaci complex is limited due to the lack of conserved molecular markers. In this study, 358, 433 and 322 new polynucleotide microsatellites are separately identified from the transcriptome sequences of three cryptic species of the B. tabaci complex.

View Article and Find Full Text PDF

Bemisia tabaci has had a colorful nomenclatural past and is now recognized as a species complex. This new species framework has added many new areas of research including adding new insight into the virus transmission specificity of the species in the B. tabaci species complex.

View Article and Find Full Text PDF

Background: The nomenclature used within the whitefly research community for different putative species within Bemisia tabaci (sensu Russell) remains highly variable and confused. This was evident by the many different naming schemes researchers were using in their presentations at the 1st International Whitefly Symposium in Kolymbari, Crete, Greece (20-24 May 2013). I wanted to try to document how we, as a community, have arrived at such a state of confused nomenclature.

View Article and Find Full Text PDF