Publications by authors named "Laura M Bexfield"

Per- and polyfluoroalkyl substances (PFAS), known colloquially as "forever chemicals," have been associated with adverse human health effects and have contaminated drinking water supplies across the United States owing to their long-term and widespread use. People in the United States may unknowingly be drinking water that contains PFAS because of a lack of systematic analysis, particularly in domestic water supplies. We present an extreme gradient-boosting model for predicting the occurrence of PFAS in groundwater at the depths of drinking water supply for the conterminous United States.

View Article and Find Full Text PDF
Article Synopsis
  • A systematic study assessed 85 volatile organic compounds (VOCs) in untreated groundwater for public supply across the U.S. from 2013 to 2019, revealing VOCs were detected in 36% of the sampled aquifer area, particularly in shallow urban wells.
  • The most commonly detected VOC was chloroform, with other notable finds including methyl tert-butyl ether and carbon disulfide, while newly monitored compounds were detected in less than 1% of the area.
  • Although overall VOC detection rates were lower compared to previous studies, significant anthropogenic influences on groundwater quality were confirmed, with minor exceedances of health benchmarks noted in a small number of wells.
View Article and Find Full Text PDF

In 2019, 254 samples were collected from five aquifer systems to evaluate perfluoroalkyl and polyfluoroalkyl substance (PFAS) occurrence in groundwater used as a source of drinking water in the eastern United States. The samples were analyzed for 24 PFAS, major ions, nutrients, trace elements, dissolved organic carbon (DOC), volatile organic compounds (VOCs), pharmaceuticals, and tritium. Fourteen of the 24 PFAS were detected in groundwater, with 60 and 20% of public-supply and domestic wells, respectively, containing at least one PFAS detection.

View Article and Find Full Text PDF

Pesticides occur in urban streams globally, but the relation of occurrence to urbanization can be obscured by regional differences. In studies of five regions of the United States, we investigated the effect of region and urbanization on the occurrence and potential toxicity of dissolved pesticide mixtures. We analyzed 225 pesticide compounds in weekly discrete water samples collected during 6-12 weeks from 271 wadable streams; development in these basins ranged from undeveloped to highly urbanized.

View Article and Find Full Text PDF

This is the first assessment of groundwater from public-supply wells across the United States to analyze for >100 pesticide degradates and to provide human-health context for degradates without benchmarks. Samples from 1204 wells in aquifers representing 70% of the volume pumped for drinking supply were analyzed for 109 pesticides (active ingredients) and 116 degradates. Among the 41% of wells where pesticide compounds were detected, nearly two-thirds contained compound mixtures and three-quarters contained degradates.

View Article and Find Full Text PDF

This is the first large-scale, systematic assessment of hormone and pharmaceutical occurrence in groundwater used for drinking across the United States. Samples from 1091 sites in Principal Aquifers representing 60% of the volume pumped for drinking-water supply had final data for 21 hormones and 103 pharmaceuticals. At least one compound was detected at 5.

View Article and Find Full Text PDF

The age distribution of water from a public-supply well in a deep alluvial aquifer was estimated and used to help explain arsenic variability in the water. The age distribution was computed using a ternary mixing model that combines three lumped parameter models of advection-dispersion transport of environmental tracers, which represent relatively recent recharge (post-1950s) containing volatile organic compounds (VOCs), old intermediate depth groundwater (about 6500 years) that was free of drinking-water contaminants, and very old, deep groundwater (more than 21,000 years) containing arsenic above the USEPA maximum contaminant level of 10 µg/L. The ternary mixing model was calibrated to tritium, chloroflorocarbon-113, and carbon-14 (14C) concentrations that were measured in water samples collected on multiple occasions.

View Article and Find Full Text PDF

Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season.

View Article and Find Full Text PDF

Pesticide data for ground water sampled across the United States between 1993-1995 and 2001-2003 by the U.S. Geological Survey National Water-Quality Assessment Program were evaluated for trends in detection frequency and concentration.

View Article and Find Full Text PDF