Objective: Comparison of the predictive ability of various machine learning algorithms (MLA) versus traditional prediction scales (TPS) for massive hemorrhage (MH) in patients with severe traumatic injury (STI).
Design: On a database of a retrospective cohort with prehospital clinical variables and MH outcome, a treatment of the database was performed to be able to apply the different AML, obtaining a total set of 473 patients (80% training, 20% validation). For modeling, proportional imputation and cross validation were performed.
Three AKT serine/threonine kinase isoforms (AKT1/AKT2/AKT3) mediate proliferation, metabolism, differentiation and anti-apoptotic signals. AKT isoforms are activated downstream of PI3-kinase and also by PI3-kinase independent mechanisms. Mutations in the lipid phosphatase PTEN and PI3-kinase that increase PIP3 levels increase AKT signaling in a large proportion of human cancers.
View Article and Find Full Text PDFEwing sarcoma is the second most common pediatric bone and soft tissue tumor presenting with an aggressive behavior and prevalence to metastasize. The diagnostic translocation t(22;11)(q24;12) leads to expression of the chimeric oncoprotein EWS-FLI1 which is uniquely expressed in all tumor cells and maintains their survival. Constant EWS-FLI1 protein turnover is regulated by the ubiquitin proteasome system.
View Article and Find Full Text PDFObjective: The advent of ligand-based receptor capture methodologies, allows the identification of unknown receptor candidates for orphan extracellular ligands. However, further target validation can be tedious, laborious and time-consuming. Here, we present a methodology that provides a fast and cost-efficient alternative for candidate target verification on living cells.
View Article and Find Full Text PDFE-26 transformation-specific (ETS) proteins are transcription factors directing gene expression through their conserved DNA binding domain. They are implicated as truncated forms or interchromosomal rearrangements in a variety of tumors including Ewing sarcoma, a pediatric tumor of the bone. Tumor cells express the chimeric oncoprotein EWS-FLI1 from a specific t(22;11)(q24;12) translocation.
View Article and Find Full Text PDFEwing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription.
View Article and Find Full Text PDFPediatric tumors harbor very low numbers of somatic mutations and therefore offer few targets to improve therapeutic management with targeted drugs. In particular, outcomes remain dismal for patients with metastatic alveolar rhabdomyosarcoma (aRMS), where the chimeric transcription factor PAX3/7-FOXO1 has been implicated but problematic to target. In this report, we addressed this challenge by developing a two-armed screen for druggable upstream regulatory kinases in the PAX3/7-FOXO1 pathway.
View Article and Find Full Text PDFProtein kinases play important regulatory roles in cells and organisms. Therefore, they are subject to specific and tight mechanisms of regulation that ultimately converge on the catalytic domain and allow the kinases to be activated or inhibited only upon the appropriate stimuli. AGC protein kinases have a pocket in the catalytic domain, the PDK1-interacting fragment (PIF)-pocket, which is a key mediator of the activation.
View Article and Find Full Text PDFThe protein kinase C-related kinase 2 (PRK2)-interacting fragment (PIF) pocket of phosphoinositide-dependent kinase-1 (PDK1) was proposed as a novel target site for allosteric modulators. In the present work, we describe the design, synthesis, and structure-activity relationship of a series of 2-(3-oxo-1,3-diphenylpropyl)malonic acids as potent allosteric activators binding to the PIF pocket. Some congeners displayed AC(50) values for PDK1 activation in the submicromolar range.
View Article and Find Full Text PDFThe PIF-pocket of AGC protein kinases participates in the physiologic mechanism of regulation by acting as a docking site for substrates and as a switch for the transduction of the conformational changes needed for activation or inhibition. We describe the effects of compounds that bind to the PIF-pocket of PDK1. In vitro, PS210 is a potent activator of PDK1, and the crystal structure of the PDK1-ATP-PS210 complex shows that PS210 stimulates the closure of the kinase domain.
View Article and Find Full Text PDFThere is growing interest in exploring allosteric sites on proteins for drug discovery. At the center of the regulation of many protein kinases from the AGC family there is an allosteric site termed "PIF-pocket." The regulated binding of a C-terminal region of the kinase to the PIF-pocket, within the small lobe of the catalytic core, modulates the activity of AGC kinases.
View Article and Find Full Text PDFProtein kinases are key mediators of cellular signaling, and therefore, their activities are tightly controlled. AGC kinases are regulated by phosphorylation and by N- and C-terminal regions. Here, we studied the molecular mechanism of inhibition of atypical PKCζ and found that the inhibition by the N-terminal region cannot be explained by a simple pseudosubstrate inhibitory mechanism.
View Article and Find Full Text PDFProtein kinase inhibitors with an allosteric mode of action are expected to reach, in many cases, higher selectivity for the target enzyme than ATP-competitive compounds. Therefore, basic research is aiming at identifying and establishing novel sites on the catalytic domain of protein kinases which might be targeted by allosteric inhibitors. We previously published the first structure-activity relationships (SARs) for allosteric activators of protein kinase PDK1.
View Article and Find Full Text PDFThe members of the AGC kinase family frequently exhibit three conserved phosphorylation sites: the activation loop, the hydrophobic motif (HM), and the zipper (Z)/turn-motif (TM) phosphorylation site. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates the activation loop of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction.
View Article and Find Full Text PDFProtein phosphorylation transduces a large set of intracellular signals. One mechanism by which phosphorylation mediates signal transduction is by prompting conformational changes in the target protein or interacting proteins. Previous work described an allosteric site mediating phosphorylation-dependent activation of AGC kinases.
View Article and Find Full Text PDFThe modulation of protein kinase activities by low molecular weight compounds is a major goal of current pharmaceutical developments. In this line, important efforts are directed to the development of drugs targeting the conserved ATP binding site. However, there is very little experience on targeting allosteric, regulatory sites, different from the ATP binding site, in protein kinases.
View Article and Find Full Text PDFOrganisms rely heavily on protein phosphorylation to transduce intracellular signals. The phosphorylation of a protein often induces conformational changes, which are responsible for triggering downstream cellular events. Protein kinases are themselves frequently regulated by phosphorylation.
View Article and Find Full Text PDF