Clickmers are chemically modified aptamers representing an innovative reagent class for developing binders for biomolecules with great impact on therapeutic and diagnostic applications. To establish a novel layer for screening various chemical entities, we developed a split-combine selection strategy simultaneously enriching for clickmers having different modifications. Due to the inherent design of this strategy, dynamic changes of DNA populations are traceable at an individual sequence level.
View Article and Find Full Text PDFSensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units.
View Article and Find Full Text PDFAptamer selection is a laborious procedure, requiring expertise and significant resources. These characteristics limit the accessibility of researchers to these molecular tools. We describe a selection procedure, making use of a robotic system that allows the fully automated selection of RNA and 2'deoxy-2'-fluoro pyrimidine RNA aptamers.
View Article and Find Full Text PDF