Publications by authors named "Laura Lattanzi"

The perspective of combining cancer vaccines with immunomodulatory drugs is currently regarded as a highly promising approach for boosting tumor-specific T cell immunity and eradicating residual malignant cells. The efficacy of dendritic cell (DC) vaccination in combination with lenalidomide, an anticancer drug effective in several hematologic malignancies, was investigated in a follicular lymphoma (FL) model. First, we evaluated the in vitro activity of lenalidomide in modulating the immune responses of lymphocytes co-cultured with a new DC subset differentiated with IFN-α (IFN-DC) and loaded with apoptotic lymphoma cells.

View Article and Find Full Text PDF

Unlabelled: We recently described a novel biotechnological platform for the production of unrestricted cytotoxic T lymphocyte (CTL) vaccines. It relies on in vivo engineering of exosomes, i.e.

View Article and Find Full Text PDF

Among strategies aimed at developing new nanoparticle-based vaccines, exosomes hold much promise. They are nanovesicles released by basically all eukaryotic cell types originating from intraluminal vesicles which accumulate in multivesicular bodies. Exosomes have immunogenic properties whose strength correlates with the amounts of associated antigens.

View Article and Find Full Text PDF

We have investigated the molecular mechanisms underlying the peculiar cross-presentation efficiency of human dendritic cells (DCs) differentiated from monocytes in the presence of Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) and Interferon (IFN)-α (IFN-DCs). To this end, we evaluated the capability of IFN-DCs to present and cross-present epitopes derived from Epstein-Barr Virus (EBV) or human melanoma-associated antigens after exposure to cell lysates or apoptotic cells. In an autologous setting, IFN-DCs loaded with Lymphoblastoid Cell Lines (LCL) lysates or apoptotic LCL were highly efficient in expanding, respectively, EBV-specific class II- or class I-restricted memory T cell responses.

View Article and Find Full Text PDF

Cellular immune responses are crucial for the control of EBV-associated lymphoproliferative diseases. To induce an anti-EBV cell-mediated immunity, we have used dendritic cells (DCs) generated by a 3-day culture of human CD14(+) monocytes in the presence of GM-CSF and type I IFN (IFN-DCs) and pulsed with peptides corresponding to CTL EBV epitopes. The functional activity of IFN-DCs was compared with that of APCs differentiated by culturing monocytes for 3 days with GM-CSF and IL-4 and indicated as IL-4-DCs.

View Article and Find Full Text PDF