plant species have been used for centuries in traditional medicine and are reported to be an important source of natural products. However, despite the large number of species within the genus, only a few have been investigated chemotaxonomically. A Molecular Network approach was used to highlight the different chemical classes characterizing the leaves of five species: , , and .
View Article and Find Full Text PDFOne of the most effective strategies to enhance the bioavailability and the therapeutic effect of hydrophobic drugs is the use of nanocarriers. We have used κ-carrageenan extracted from Kappaphycus alvarezii to produce oligocarrageenan via an enzymatic degradation process. Polycaprolactone (PCL) chains were grafted onto the oligocarrageenans using a protection/deprotection technique yielding polycaprolactone-grafted oligocarrageenan.
View Article and Find Full Text PDFPolysaccharides from seaweeds are interesting materials for food and pharmaceutical applications such as drug delivery due to their biocompatibility and biodegradability. Extraction of these biopolymers is usually performed during several hours to obtain a significant extraction yield. In this paper, we report on a new process to extract alginates from brown seaweeds (Sargassum binderi and Turbinaria ornata) and carrageenans from red seaweeds (Kappaphycus alvarezii and Euchema denticulatum) with the assistance of ultrasound.
View Article and Find Full Text PDFChlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
July 2012
Chlorogenic acids (CGAs) are a group of soluble phenolic compounds that are produced by a variety of plants, including Coffea canephora (robusta coffee). The last step in CGA biosynthesis is generally catalysed by a specific hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HQT), but it can also be catalysed by the more widely distributed hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT). Here, the cloning and overexpression of HCT from C.
View Article and Find Full Text PDF