Studies on sulfur metabolism in archaea have revealed many novel enzymes and pathways and have advanced our understanding on metabolic processes, not only of the archaea, but of biology in general. A variety of dissimilatory sulfur metabolisms, i.e.
View Article and Find Full Text PDFMethanogenesis is an ancient metabolism that originated on the early anoxic Earth. The buildup of O(2) about 2.4 billion years ago led to formation of a large oceanic sulfate pool, the onset of widespread sulfate reduction and the marginalization of methanogens to anoxic and sulfate-poor niches.
View Article and Find Full Text PDFPolyketides are among the major classes of bioactive natural products used to treat microbial infections, cancer, and other diseases. Here we describe a pathway to chloroethylmalonyl-CoA as a polyketide synthase building block in the biosynthesis of salinosporamide A, a marine microbial metabolite whose chlorine atom is crucial for potent proteasome inhibition and anticancer activity. S-adenosyl-L-methionine (SAM) is converted to 5'-chloro-5'-deoxyadenosine (5'-ClDA) in a reaction catalyzed by a SAM-dependent chlorinase as previously reported.
View Article and Find Full Text PDFThere is currently substantial interest in utilizing eukaryotic algae for the renewable production of several bioenergy carriers, including starches for alcohols, lipids for diesel fuel surrogates, and H2 for fuel cells. Relative to terrestrial biofuel feedstocks, algae can convert solar energy into fuels at higher photosynthetic efficiencies, and can thrive in salt water systems. Recently, there has been considerable progress in identifying relevant bioenergy genes and pathways in microalgae, and powerful genetic techniques have been developed to engineer some strains via the targeted disruption of endogenous genes and/or transgene expression.
View Article and Find Full Text PDF[structure: see text] Feeding experiments with stable isotopes established that the potent 20S-proteasome inhibitors salinosporamide A and B are biosynthesized in the marine bacterium Salinispora tropica from three biosynthetic building blocks, namely, acetate, beta-hydroxy-2'-cyclohexenylalanine, and either butyrate or a tetrose-derived chlorinated molecule. The unexpected observation that the chlorinated four-carbon residue in salinosporamide A is derived from a different metabolic origin than the non-chlorinated four-carbon unit in salinosporamide B is suggestive of a convergent biosynthesis to these two anticancer natural products.
View Article and Find Full Text PDFThe microcystin family of toxins is the most common cause of hepatotoxicity associated with water blooms of cyanobacterial genera. The biosynthetic assembly line producing the toxic cyclic peptide, microcystin, contains an adenylation-peptidyl carrier protein didomain (A-PCP) at the N-terminus of the initiator module McyG (295 kDa) that has been postulated to activate and load the starter unit phenylacetate for formation of the unusual aromatic beta-amino acid residue, Adda, before subsequent extension. Characterization of the McyG A-PCP didomain (78 kDa) using ATP-PP i exchange assays and mass spectrometry revealed that assorted phenylpropanoids are preferentially activated and loaded onto the PCP carrier domain rather than phenylacetate itself.
View Article and Find Full Text PDF