Publications by authors named "Laura K Hanson"

Alzheimer's disease (AD) manifests with loss of neurons correlated with intercellular deposition of amyloid (amyloid plaques) and intracellular neurofibrillary tangles of hyperphosphorylated tau. However, targeting AD hallmarks has not as yet led to development of an effective treatment despite numerous clinical trials. A better understanding of the early stages of neurodegeneration may lead to development of more effective treatments.

View Article and Find Full Text PDF

Herpesviruses are prevalent throughout the animal kingdom, and they have coexisted and coevolved along with their host species for millions of years. Herpesviruses carry a large (120-230 kb) double-stranded DNA genome surrounded by a protein capsid, a tegument layer consisting of viral and host proteins, and a lipid bilayer envelope with surface glycoproteins. A key characteristic of these viruses is their ability to enter a latent state following primary infection, allowing them to evade the host's immune system and persist permanently.

View Article and Find Full Text PDF

The capacity to mentally project the self into the future, or what has been termed "episodic foresight" (EpF), is becoming a popular topic of study in developmental psychology. Several theories propose that EpF is related to theory of mind (ToM) and executive function (EF). However, these links have not been tested using standard behavioral tasks in young children.

View Article and Find Full Text PDF

Episodic foresight (EpF) or, the ability to imagine the future and use such imagination to guide our actions, is an important aspect of cognition that has not yet been explored in children with autism spectrum disorder (ASD). This is despite its proposed links with theory of mind (ToM) and executive function (EF), two areas found to be impaired in ASD. Twenty-five children with ASD (M = 5 years, 10 months; 22 male) and 25 mental-age-matched typically developing children (M = 4 years, 10 months; 22 male) completed a series of EpF, ToM, and EF tasks.

View Article and Find Full Text PDF

Background: Purα is an evolutionarily conserved cellular protein participating in processes of DNA replication, transcription, and RNA transport; all involving binding to nucleic acids and altering conformation and physical positioning. The distinct but related roles of Purα suggest a need for expression regulated differently depending on intracellular and external signals.

Results: Here we report that human PURA (hPURA) transcription is regulated from three distinct and widely-separated transcription start sites (TSS).

View Article and Find Full Text PDF

Stable assembly of murine cytomegalovirus (MCMV) virions in differentiated macrophages is dependent upon the expression of US22 family gene M140. The M140 protein (pM140) exists in complex with products of neighboring US22 genes. Here we report that pM140 protects its binding partner, pM141, from ubiquitin-independent proteasomal degradation.

View Article and Find Full Text PDF

Macrophages are an important target cell for infection with cytomegalovirus (CMV). A number of viral genes that either are expressed specifically in this cell type or function to optimize CMV replication in this host cell have now been identified. Among these is the murine CMV (MCMV) US22 gene family member M140, a nonessential early gene whose deletion (RVDelta140) leads to significant impairment in virus replication in differentiated macrophages.

View Article and Find Full Text PDF

In response to viral infection, cells activate a variety of antiviral responses, including several that are triggered by double-stranded (ds) RNA. Among these are the protein kinase R and oligoadenylate synthetase/RNase L pathways, both of which result in the shutoff of protein synthesis. Many viruses, including human cytomegalovirus, encode dsRNA-binding proteins that prevent the activation of these pathways and thereby enable continued protein synthesis and viral replication.

View Article and Find Full Text PDF

US22 gene family members m142 and m143 are essential for replication of murine cytomegalovirus (MCMV). Their transcripts are produced with immediate-early kinetics, but little else is known about these viral genes. Unlike their transcripts, the m142 and m143 gene products (pm142, pm143) were not expressed until early times post-infection, with levels increasing over the course of infection.

View Article and Find Full Text PDF

The murine cytomegalovirus (MCMV) proteins encoded by US22 genes M139, M140, and M141 function, at least in part, to regulate replication of this virus in macrophages. Mutant MCMV having one or more of these genes deleted replicates poorly in macrophages in culture and in the macrophage-dense environment of the spleen. In this report, we demonstrate the existence of stable complexes formed by the products of all three of these US22 genes, as well as a complex composed of the products of M140 and M141.

View Article and Find Full Text PDF