Publications by authors named "Laura K Fishwick"

We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR.

View Article and Find Full Text PDF

Understanding how non-dividing cells remain viable over long periods of time, which may be decades in humans, is of central importance in understanding mechanisms of aging and longevity. The long-term viability of non-dividing cells, known as chronological longevity, relies on cellular processes that degrade old components and replace them with new ones. Key among these processes is amino acid homeostasis.

View Article and Find Full Text PDF

Little is known about how genetic variation at the nucleotide level contributes to competitive fitness within species. During a 6,000-generation study of Bacillus subtilis evolved under relaxed selection for sporulation, a new strain, designated WN716, emerged with significantly different colony and cell morphologies; loss of sporulation, competence, acetoin production, and motility; multiple auxotrophies; and increased competitive fitness (H. Maughan and W.

View Article and Find Full Text PDF

Following cessation of growth, yeast cells remain viable in a nondividing state for a period of time known as the chronological lifespan (CLS). Autophagy is a degradative process responsible for amino acid recycling in response to nitrogen starvation and amino acid limitation. We have investigated the role of autophagy during chronological aging of yeast grown in glucose minimal media containing different supplemental essential and nonessential amino acids.

View Article and Find Full Text PDF