Seven new arylpyrrole alkaloids (-), along with four known compounds, were isolated from an extract of a sp. nov. marine sponge, and their structures were elucidated by interpretation of NMR and MS spectroscopic data.
View Article and Find Full Text PDFThe indolocarbazole family of bisindole alkaloids is best known for the natural product staurosporine, a protein kinase C inhibitor that belongs to the indolo[2,3-a]carbazole structural class. A large number of other indolo[2,3-a]carbazoles have subsequently been isolated and identified, but other isomeric forms of indolocarbazole natural products have rarely been reported. An extract of the marine sponge Damiria sp.
View Article and Find Full Text PDFSpirodactylone (1), a hexacyclic indolizidone alkaloid possessing a novel spiro ring system, was isolated from the marine sponge Dactylia sp. The structure was elucidated by extensive spectroscopic methods including application of the LR-HSQMBC NMR pulse sequence. Oxidative cyclization of denigrin B (2), an aryl-substituted 2-oxo-pyrroline derivative that was also isolated from the sponge extract, provided material identical to spirodactylone (1).
View Article and Find Full Text PDFAmbiguities and errors in the structural assignment of organic molecules hinder both drug discovery and total synthesis efforts. Newly described NMR experimental approaches can provide valuable structural details and a complementary means of structure verification. The caulamidines are trihalogenated alkaloids from a marine bryozoan with an unprecedented structural scaffold.
View Article and Find Full Text PDFA high-throughput screening assay for modulators of Trp53/NF1 mutant astrocytoma cell growth was adapted for use with natural product extracts and applied to a novel collection of prefractionated/partially purified extracts. Screening 68 427 samples identified active fractions from 95 unique extracts, including the terrestrial plant Millettia ichthyotona. Only three of these extracts showed activity in the crude extract form, thus demonstrating the utility of a partial purification approach for natural product screening.
View Article and Find Full Text PDFTwo new HIV-inhibitory depsipeptides, stellettapeptins A () and B (), were isolated from an extract of the marine sponge sp., collected from northwestern Australia. Structures of these cyclic nonribosomal peptides were elucidated on the basis of extensive NMR data analysis, and chemical degradation and derivatization studies.
View Article and Find Full Text PDFWe have completed a robust high-content imaging screen for novel estrogen receptor α (ERα) agonists and antagonists by quantitation of cytoplasmic to nuclear translocation of an estrogen receptor chimera in 384-well plates. The screen was very robust, with Z' values >0.7 and coefficients of variation (CV) <5%.
View Article and Find Full Text PDFFive new naphthopyrones (1-5) along with the known compounds TMC-256A1, 5,8-dihydroxy-6-methoxy-2-propyl-4H-naphtho[2,3-b]pyran-4-one, TMC-256C1, comaparvin, 6-methoxycomaparvin, and 6-methoxycomaparvin 5-methyl ether (6-11) were isolated from crinoids of the family Comasteridae. All compounds were tested for their ability to inhibit the multidrug transporter ABCG2, which plays a role in drug resistance. Six of the seven angular naphthopyrones showed moderate activity with <60% inhibition of ABCG2-mediated transport as compared to the positive control fumitremorgin C.
View Article and Find Full Text PDFA new HIV-inhibitory cyclic depsipeptide, neamphamide A (2), was isolated from a Papua New Guinea collection of the marine sponge Neamphius huxleyi. Its structure was established through interpretation of spectroscopic data and by acid hydrolysis, derivatization of the free amino acids, and LC-MS analysis of the derivatives. Neamphamide A (2) contains 11 amino acid residues and an amide-linked 3-hydroxy-2,4,6-trimethylheptanoic acid moiety.
View Article and Find Full Text PDFThe development of anti-human immunodeficiency virus (HIV) microbicides for either topical or ex vivo use is of considerable interest, mainly due to the difficulties in creating a vaccine that would be active against multiple clades of HIV. Cyanovirin-N (CV-N), an 11-kDa protein from the cyanobacterium (blue-green algae) Nostoc ellipsosporum with potent virucidal activity, was identified in the search for such antiviral agents. The binding of CV-N to the heavily glycosylated HIV envelope protein gp120 is carbohydrate-dependent.
View Article and Find Full Text PDFCyanovirin-N (CV-N) is a potent 11 kDa HIV-inactivating protein that binds with high affinity to the HIV surface envelope protein gp120. A double mutant P51S/S52P of CV-N was engineered by swapping two critical hinge-region residues Pro51 and Ser52. This mutant has biochemical and biophysical characteristics equivalent to the wild-type CV-N and its structure resembles that of wild-type CV-N.
View Article and Find Full Text PDF