The fundamental property of P2X7 receptor (P2X7R) channels is the transport of cations across the cell surface membrane. Electrophysiology and patch-clamp photometry are readily accessible methods of measuring this flux in a wide range of cell types. They are important tools used to characterize the functional properties of native cells studied in cell culture, in vitro tissue slices, and, in some cases, in situ single cells.
View Article and Find Full Text PDFImmune cells of myeloid origin show robust expression of ATP-gated P2X7 receptors, two-transmembrane ion channels permeable to Na, K, and Ca Receptor activation promotes inflammasome activation and release of the proinflammatory cytokines IL-1β and IL-18. In this study, we show that ATP generates facilitating cationic currents in monocyte-derived human macrophages and permeabilizes the plasma membrane to polyatomic cationic dyes. We find that antagonists of PLA and Cl channels abolish P2X7 receptor-mediated current facilitation, membrane permeabilization, blebbing, phospholipid scrambling, inflammasome activation, and IL-1β release.
View Article and Find Full Text PDFBackground: The ATP-gated ionotropic P2X7 receptor (P2X7R) has the unusual ability to function as a small cation channel and a trigger for permeabilization of plasmalemmal membranes. In murine microglia, P2X7R-mediated permeabilization is fundamental to microglial activation, proliferation, and IL-1β release. However, the role of the P2X7R in primary adult human microglia is poorly understood.
View Article and Find Full Text PDF