We treated highly metabolically adaptable (SUM149-MA) triple-negative inflammatory breast cancer cells and their control parental SUM149-Luc cell line with JQ1 for long periods to determine its efficacy at inhibiting therapy-resistant cells. After 20 days of treatment with 1-2 µM of JQ1, which killed majority of cells in the parental cell line, a large number of SUM149-MA cells survived, consistent with their pan-resistant nature. Interestingly, though, the JQ1 treatment sensitized resistant cancer cells in both the SUM149-MA and SUM149-Luc cell lines to subsequent treatment with doxorubicin and paclitaxel.
View Article and Find Full Text PDFWe previously described a strategy for selecting highly adaptable rare triple-negative breast cancer (TNBC) cells based on their ability to survive a severe and prolonged metabolic challenge, e.g., a lack of glutamine.
View Article and Find Full Text PDFWe have previously shown that only 0.01% cells survive a metabolic challenge involving lack of glutamine in culture medium of SUM149 triple-negative Inflammatory Breast Cancer cell line. These cells, designated as SUM149-MA for metabolic adaptability, are resistant to chemotherapeutic drugs, and they efficiently metastasize to multiple organs in nude mice.
View Article and Find Full Text PDF