Publications by authors named "Laura J Sewell"

Quadrupolar oligothiophene chromophores composed of four to five thiophene rings with two terminal (E)-dimesitylborylvinyl groups (4 V-5 V), and five thiophene rings with two terminal aryldimesitylboryl groups (5 B), as well as an analogue of 5 V with a central EDOT ring (5 VE), have been synthesized via Pd-catalyzed cross-coupling reactions in high yields (66-89%). Crystal structures of 4 V, 5 B, bithiophene 2 V, and five thiophene-derived intermediates are reported. Chromophores 4 V, 5 V, 5 B and 5 VE have photoluminescence quantum yields of 0.

View Article and Find Full Text PDF

A combined experimental and computational study on the fluxional processes involving the M-H and B-H positions in the sigma amine-borane complexes [M(PR3)2(H)2(η(2)-H3B·NMe3)][BAr(F)4] (M = Rh, Ir; R = Cy for experiment; R = Me, Cy for computation; Ar(F) = 3,5-(CF3)2C6H3) is reported. The processes studied are: B-H bridging/terminal exchange; reaction with exogenous D2 leading to exchange at M-H; and intramolecular M-H/B-H exchange. Experimentally it was found that B-H bridging/terminal exchange is most accessible and slightly favoured for Rh; D2/M-H exchange occurs at qualitatively similar rates for both M = Rh and Ir, while M-H/B-H exchange is the slowest overall, with the Ir congener having a lower barrier than Rh.

View Article and Find Full Text PDF

The Rh(III) species Rh(PCy3)2H2Cl is an effective catalyst (2 mol %, 298 K) for the dehydrogenation of H3B·NMe2H (0.072 M in 1,2-F2C6H4 solvent) to ultimately afford the dimeric aminoborane [H2BNMe2]2. Mechanistic studies on the early stages in the consumption of H3B·NMe2H, using initial rate and H/D exchange experiments, indicate possible dehydrogenation mechanisms that invoke turnover-limiting N-H activation, which either precedes or follows B-H activation, to form H2B═NMe2, which then dimerizes to give [H2BNMe2]2.

View Article and Find Full Text PDF

The multistage Rh-catalyzed dehydrocoupling of the secondary amine-borane H(3)B·NMe(2)H, to give the cyclic amino-borane [H(2)BNMe(2)](2), has been explored using catalysts based upon cationic [Rh(PCy(3))(2)](+) (Cy = cyclo-C(6)H(11)). These were systematically investigated (NMR/MS), under both stoichiometric and catalytic regimes, with the resulting mechanistic proposals for parallel catalysis and autocatalysis evaluated by kinetic simulation. These studies demonstrate a rich and complex mechanistic landscape that involves dehydrogenation of H(3)B·NMe(2)H to give the amino-borane H(2)B═NMe(2), dimerization of this to give the final product, formation of the linear diborazane H(3)B·NMe(2)BH(2)·NMe(2)H as an intermediate, and its consumption by both B-N bond cleavage and dehydrocyclization.

View Article and Find Full Text PDF

The catalytic hydroboration of tert-butylethene using H(3)B·NMe(3) gives RH(2)B·NMe(3). With H(3)B·NMe(2)H tandem hydroboration under mild conditions/dehydrocoupling occurs that produces R(2)B=NMe(2) (R = H, CH(2)CH(2)(t)Bu).

View Article and Find Full Text PDF

We report the first insertion step at a metal center for the catalytic dehydropolymerization of H(3)B·NMeH(2) to form the simplest oligomeric species, H(3)B·NMeHBH(2)·NMeH(2), by the addition of 1 equiv of H(3)B·NMeH(2) to [Ir(PCy(3))(2)(H)(2)(η(2)-H(3)B·NMeH(2))][BAr(F)(4)] to give [Ir(PCy(3))(2)(H)(2)(η(2)-H(3)B·NMeHBH(2)·NMeH(2))][BAr(F)(4)]. This reaction is also catalytic for the formation of the free linear diborazane, but this is best obtained by an alternative stoichiometric synthesis.

View Article and Find Full Text PDF

[Rh(P(t)Bu(i)Bu(2))(2)][BAr(F)(4)], formed by removal of H(2) from [RhH(2)(P(t)Bu(i)Bu(2))(2)][BAr(F)(4)], is in rapid equilibrium between C-H activated Rh(III) isomers, but reacts as a masked 12-electron [Rh(P(t)Bu(i)Bu(2))(2)](+) Rh(I) cation.

View Article and Find Full Text PDF