Breast cancer is a heterogeneous disease characterized by varying responses to therapeutic agents and significant differences in long-term survival. Thus, there remains an unmet need for early diagnostic and prognostic tools and improved histologic characterization for more accurate disease stratification and personalized therapeutic intervention. This study evaluated a comprehensive metabolic phenotyping method in breast cancer tissue that uses desorption electrospray ionization mass spectrometry imaging (DESI MSI), both as a novel diagnostic tool and as a method to further characterize metabolic changes in breast cancer tissue and the tumor microenvironment.
View Article and Find Full Text PDFHere we present a proof of concept cross-platform normalization approach to convert raw mass spectra acquired by distinct desorption ionization methods and/or instrumental setups to cross-platform normalized analyte profiles. The initial step of the workflow is database driven peak annotation followed by summarization of peak intensities of different ions from the same molecule. The resulting compound-intensity spectra are adjusted to a method-independent intensity scale by using predetermined, compound-specific normalization factors.
View Article and Find Full Text PDFPurpose Of Review: Metabolic profiling technologies provide a global overview of complex dietary processes. Metabonomic analytical approaches have now been translated into multiple areas of clinical nutritional research based on the widespread adoption of high-throughput mass spectrometry and proton nuclear magnetic resonance spectroscopy. This has generated novel insights into the molecular mechanisms that shape the microbiome-dietary-chronic disease axis.
View Article and Find Full Text PDFRapid evaporative ionization mass spectrometry (REIMS) is an emerging technique that allows near-real-time characterization of human tissue in vivo by analysis of the aerosol ("smoke") released during electrosurgical dissection. The coupling of REIMS technology with electrosurgery for tissue diagnostics is known as the intelligent knife (iKnife). This study aimed to validate the technique by applying it to the analysis of fresh human tissue samples ex vivo and to demonstrate the translation to real-time use in vivo in a surgical environment.
View Article and Find Full Text PDFSystems-wide molecular analysis of the metabolic, inflammatory and immune response to surgical trauma has yet to be translated into the operating room. Surgical patients are exposed to a large number of heterogeneous environmental insults that cannot only be quantified by genome-orientated 'omics platforms. Furthermore, surgery demands rapid or near real-time analysis.
View Article and Find Full Text PDF