Publications by authors named "Laura J Jones"

Climate change presents a major threat to species distribution and persistence. Understanding what abiotic or biotic factors influence the thermal tolerances of natural populations is critical to assessing their vulnerability under rapidly changing thermal regimes. This study evaluates how body mass, local climate, and pathogen intensity influence heat tolerance and its population-level variation (SD) among individuals of the solitary bee .

View Article and Find Full Text PDF

The squash bee Eucera (Peponapis) pruinosa is emerging as a model species to study how stressors impact solitary wild bees in North America. Here, we describe the prevalence of trypanosomes, microsporidians and mollicute bacteria in E. pruinosa and two other species, Bombus impatiens and Apis mellifera, that together comprise over 97% of the pollinator visitors of Cucurbita agroecosystems in Pennsylvania (United States).

View Article and Find Full Text PDF

Managed and wild bee populations are in decline around the globe due to several biotic and abiotic stressors. Pathogenic viruses associated with the Western honey bee (Apis mellifera) have been identified as key contributors to losses of managed honey bee colonies, and are known to be transmitted to wild bee populations through shared floral resources. However, little is known about the prevalence and intensity of these viruses in wild bee populations, or how bee visitation to flowers impacts viral transmission in agroecosystems.

View Article and Find Full Text PDF

Cone photoreceptor cyclic-nucleotide gated channels (CNG) are tetrameric proteins composed of subunits from and . These channels transduce light information into electrical signals carried by both Na and Ca ions. More than 100 mutations in the gene are associated with the inherited retinal disorder, achromatopsia 2 (ACHM2), which results in attenuation or loss of color vision, daylight blindness, and reduced visual acuity.

View Article and Find Full Text PDF

Bacterial cell shape is determined by a rigid external cell wall. In most non-coccoid bacteria, this shape is also determined by an internal cytoskeleton formed by the actin homologues MreB and/or Mbl. To gain further insights into the topological control of cell wall synthesis in bacteria, we have constructed green fluorescent protein (GFP) fusions to all 11 penicillin-binding proteins (PBPs) expressed during vegetative growth of Bacillus subtilis.

View Article and Find Full Text PDF