Publications by authors named "Laura J Domigan"

Extracellular matrix (ECM) is essential for tissue development, providing structural support and a microenvironment that is necessary for cells. As tissue engineering advances, there is a growing demand for ECM mimics. Polycaprolactone (PCL) is a commonly used synthetic polymer for ECM mimic materials.

View Article and Find Full Text PDF

Abstract: The self-assembling and gelation properties of a bioactive peptide derived from bovine casein (FFVAPFPEVFGK) were studied in the peptide's natural form (uncapped, ) and capped with protecting groups added to both termini (capped, ). Although the natural peptide () did not demonstrate self-assembly, the capped peptide () spontaneously self-assembled and formed a self-supporting gel. Variations in peptide concentration and incubation time influenced the gel's mechanical properties, suggesting the peptide's properties could be tuned and exploited for different applications.

View Article and Find Full Text PDF

As a step toward the bottom-up construction of magnonic systems, this paper demonstrates the use of a large-amplitude surface-pressure annealing technique to generate 2-D order in a Langmuir-Blodgett monolayer of magnetic soft spheres comprising a surfactant-encapsulated polyoxometalate. The films show a distorted square lattice interpreted as due to geometric frustration caused by 2-D confinement between soft walls, one being the air interface and the other the aqueous subphase. Hysteresis and relaxation phenomena in the 2-D layers are suggested to be due to folding and time-dependent interpenetration of surfactant chains.

View Article and Find Full Text PDF

Plastic waste is ubiquitously spread across the world and its smaller analogs-microplastics and nanoplastics-raise particular health concerns. While biological impacts of microplastics and nanoplastics have been actively studied, the chemical and biological bases for the adverse effects are sought after. This work explores contributory factors by combining results from in vitro and model mammalian membrane experimentation to assess the outcome of cell/nanoplastic interactions in molecular detail, inspecting the individual contribution of nanoplastics and different types of protein coronae.

View Article and Find Full Text PDF

Celiac disease is activated by digestion-resistant gluten peptides that contain immunogenic epitopes. Sourdough fermentation is a potential strategy to reduce the concentration of these peptides within food. However, we currently know little about the effect of partial sourdough fermentation on immunogenic gluten.

View Article and Find Full Text PDF

Peptides are known for their diverse bioactivities including antioxidant, antimicrobial, and anticancer activity, all three of which are potentially useful in treating colon-associated diseases. Beside their capability to stimulate positive health effects once released in the body, peptides are able to form useful nanostructures such as hydrogels. Combining peptide bioactivity and peptide gel-forming potentials can create interesting systems that can be used for oral delivery.

View Article and Find Full Text PDF

We demonstrate the assembly of a compact, gel-like Langmuir-Blodgett film of rods formed by self-assembly of a β-sheet-forming water-soluble peptide, Ac-IKHLSVN-NH, at the surface of aqueous electrolytes. We characterize surface pressure hysteresis and demonstrate shear stiffening of the surface caused by area cycling, which we interpret as due to rearrangement and alignment of the rods. We show strong effects of the electrolyte on the assembly of the elementary rods, which can be related to the Hofmeister series and interpreted by effects on the interaction energies mediated by ions and water.

View Article and Find Full Text PDF

Biological systems often outperform artificial ones in ordering, assembly, and diversity of structure at the nanoscale. Proteins are particularly remarkable in this context. Through oligomerization, protein monomers assemble on multiple length scales, into larger and more complex structures such as viral capsids, filaments, and regulatory complexes.

View Article and Find Full Text PDF

Protein nanotechnology research is at the intersection of protein biology and nanotechnology. Protein molecules are repurposed as nanostructures and nanoscaffolds, and nanoscale tools are used to investigate protein assembly and function. In this chapter, a select review is given of some of the recent examples of protein nanostructures, covering both those directly borrowed from biology and those designed for use in nanotechnology.

View Article and Find Full Text PDF

The ability of proteins to form hierarchical structures through self-assembly provides an opportunity to synthesize and organize nanoparticles. Ordered nanoparticle assemblies are a subject of widespread interest due to the potential to harness their emergent functions. In this work, the toroidal-shaped form of the protein peroxiredoxin, which has a pore size of 7 nm, was used to organize iron oxyhydroxide nanoparticles.

View Article and Find Full Text PDF

Tobacco etch virus (TEV) protease is widely used for the removal of poly-histidine affinity tags from proteins. In solution, it is a one-time use enzyme for tag cleavage that has low stability, and is therefore a good candidate for immobilization. Amyloid fibrils can act as a versatile nanoscaffold by providing a large surface area for biomolecule immobilization.

View Article and Find Full Text PDF

Recent research has highlighted the exciting possibilities enabled by the use of protein structures as nanocomponents to form functional nanodevices. To this end, control over protein-protein and protein-surface interactions is essential. In this study, the authors probe the interaction of human peroxiredoxin 3 with gold surfaces, a protein that has been previously identified as having potential use in nanotechnology.

View Article and Find Full Text PDF

Amyloid fibrils are a class of insoluble protein nanofibers that are formed via the self-assembly of a wide range of peptides and proteins. They are increasingly exploited for a broad range of applications in bionanotechnology, such as biosensing and drug delivery, as nanowires, hydrogels, and thin films. Amyloid fibrils have been prepared from many proteins, but there has been no definitive characterization of amyloid fibrils from hemoglobin to date.

View Article and Find Full Text PDF

The current landscape of nanotechnology is such that attention is being given to those materials that self-assemble, as a mode of "bottom-up" fabrication of nanomaterials. The field of nanotubes and nanowires has long been dominated by carbon nanotubes and inorganic materials. However in more recent years, the search for materials with desirable properties, such as self-assembly, has unsurprisingly led to the biological world, where functional nanoscale biomolecular assemblies are in abundance.

View Article and Find Full Text PDF

Amyloid fibrils have been recognized as having potential in a variety of bionanotechnological applications. However, realization of these applications is constrained by a lack of control over morphology and alignment, both crucial for potential end uses. This article focuses on the use of growth and storage conditions to control the length of amyloid fibrils formed from bovine insulin, with length distributions constructed from transmission electron microscopy (TEM) images.

View Article and Find Full Text PDF