Publications by authors named "Laura J Byrnes"

Peptidyl arginine deiminases (PADs) are important enzymes in many diseases, especially those involving inflammation and autoimmunity. Despite many years of effort, developing isoform-specific inhibitors has been a challenge. We describe herein the discovery of a potent, noncovalent PAD2 inhibitor, with selectivity over PAD3 and PAD4, from a DNA-encoded library.

View Article and Find Full Text PDF

To facilitate the detection and management of potential clinical antiviral resistance, in vitro selection of drug-resistant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) against the virus M inhibitor nirmatrelvir (Paxlovid active component) was conducted. Six M mutation patterns containing T304I alone or in combination with T21I, L50F, T135I, S144A, or A173V emerged, with A173V+T304I and T21I+S144A+T304I mutations showing >20-fold resistance each. Biochemical analyses indicated inhibition constant shifts aligned to antiviral results, with S144A and A173V each markedly reducing nirmatrelvir inhibition and M activity.

View Article and Find Full Text PDF

A series of small-molecule YEATS4 binders have been discovered as part of an ongoing research effort to generate high-quality probe molecules for emerging and/or challenging epigenetic targets. Analogues such as and demonstrate excellent potency and selectivity for YEATS4 binding versus YEATS1,2,3 and exhibit good physical properties and in vitro safety profiles. A new X-ray crystal structure confirms direct binding of this chemical series to YEATS4 at the lysine acetylation recognition site of the YEATS domain.

View Article and Find Full Text PDF

Atlastin (ATL) GTPases catalyze homotypic membrane fusion of the peripheral endoplasmic reticulum (ER). GTP-hydrolysis-driven conformational changes and membrane tethering are prerequisites for proper membrane fusion. However, the molecular basis for regulation of these processes is poorly understood.

View Article and Find Full Text PDF

The ability to predict chemical structure from DNA sequence has to date been a necessary cornerstone of DNA-encoded library technology. DNA-encoded libraries (DELs) are typically screened by immobilized affinity selection and enriched library members are identified by counting the number of times an individual compound's sequence is observed in the resultant dataset. Those with high signal reads (DEL hits) are subsequently followed up through off-DNA synthesis of the predicted small molecule structures.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Mutations associated with CF cause loss-of-function in CFTR leading to salt imbalance in epithelial tissues. Kalydeco (also called VX-770 or ivacaftor) was approved for CF treatment in 2012 but little is known regarding the compound's interactions with CFTR including the site of binding or mechanisms of action.

View Article and Find Full Text PDF

The dynamin-related GTPase atlastin (ATL) catalyzes membrane fusion of the endoplasmic reticulum and thus establishes a network of branched membrane tubules. When ATL function is compromised, the morphology of the endoplasmic reticulum deteriorates, and these defects can result in neurological disorders such as hereditary spastic paraplegia and hereditary sensory neuropathy. ATLs harness the energy of GTP hydrolysis to initiate a series of conformational changes that enable homodimerization and subsequent membrane fusion.

View Article and Find Full Text PDF

Cyclic GMP-AMP synthase (cGAS) is activated by ds-DNA binding to produce the secondary messenger 2',3'-cGAMP. cGAS is an important control point in the innate immune response; dysregulation of the cGAS pathway is linked to autoimmune diseases while targeted stimulation may be of benefit in immunoncology. We report here the structure of cGAS with dinucleotides and small molecule inhibitors, and kinetic studies of the cGAS mechanism.

View Article and Find Full Text PDF

The most common mutation in cystic fibrosis (CF) patients is deletion of F508 (ΔF508) in the first nucleotide binding domain (NBD1) of the CF transmembrane conductance regulator (CFTR). ΔF508 causes a decrease in the trafficking of CFTR to the cell surface and reduces the thermal stability of isolated NBD1; it is well established that both of these effects can be rescued by additional revertant mutations in NBD1. The current paradigm in CF small molecule drug discovery is that, like revertant mutations, a path may exist to ΔF508 CFTR correction through a small molecule chaperone binding to NBD1.

View Article and Find Full Text PDF

Atlastin, a member of the dynamin superfamily, is known to catalyse homotypic membrane fusion in the smooth endoplasmic reticulum (ER). Recent studies of atlastin have elucidated key features about its structure and function; however, several mechanistic details, including the catalytic mechanism and GTP hydrolysis-driven conformational changes, are yet to be determined. Here, we present the crystal structures of atlastin-1 bound to GDP·AlF(4)(-) and GppNHp, uncovering an intramolecular arginine finger that stimulates GTP hydrolysis when correctly oriented through rearrangements within the G domain.

View Article and Find Full Text PDF

Endocytosis is a fundamental process in signaling and membrane trafficking. The formation of vesicles at the plasma membrane is mediated by the G protein dynamin that catalyzes the final fission step, the actin cytoskeleton, and proteins that sense or induce membrane curvature. One such protein, the F-BAR domain-containing protein pacsin, contributes to this process and has been shown to induce a spectrum of membrane morphologies, including tubules and tube constrictions in vitro.

View Article and Find Full Text PDF

Contrary to the accepted dogma that ATP is the canonical phosphate donor in aminoglycoside kinases and protein kinases, it was recently demonstrated that all members of the bacterial aminoglycoside 2''-phosphotransferase IIIa (APH(2'')) aminoglycoside kinase family are unique in their ability to utilize GTP as a cofactor for antibiotic modification. Here we describe the structural determinants for GTP recognition in these enzymes. The crystal structure of the GTP-dependent APH(2'')-IIIa shows that although this enzyme has templates for both ATP and GTP binding superimposed on a single nucleotide specificity motif, access to the ATP-binding template is blocked by a bulky tyrosine residue.

View Article and Find Full Text PDF

Fluorescent proteins that can switch between distinct colors have contributed significantly to modern biomedical imaging technologies and molecular cell biology. Here we report the identification and biochemical analysis of a green-shifted red fluorescent protein variant GmKate, produced by the introduction of two mutations into mKate. Although the mutations decrease the overall brightness of the protein, GmKate is subject to pH-dependent, reversible green-to-red color conversion.

View Article and Find Full Text PDF

Circular permutation of fluorescent proteins provides a substrate for the design of molecular sensors. Here we describe a systematic exploration of permutation sites for mCherry and mKate using a tandem fusion template approach. Circular permutants retaining more than 60% (mCherry) and 90% (mKate) brightness of the parent molecules are reported, as well as a quantitative evaluation of the fluorescence from neighboring mutations.

View Article and Find Full Text PDF

The large GTPase atlastin belongs to the dynamin superfamily that has been widely implicated in facilitating membrane tubulation, fission, and in select cases, fusion. Mutations spread across atlastin isoform 1 (atlastin-1) have been identified in patients suffering from hereditary spastic paraplegia (HSP), a neurodegenerative disorder affecting motor neuron function in the lower extremities. On a molecular level, atlastin-1 associates with high membrane curvature and fusion events at the endoplasmic reticulum and cis-Golgi.

View Article and Find Full Text PDF

Aminoglycoside-2''-phosphotransferase-IIa [APH(2'')-IIa] is one of a number of homologous bacterial enzymes responsible for the deactivation of the aminoglycoside family of antibiotics and is thus a major component in bacterial resistance to these compounds. APH(2'')-IIa produces resistance to several clinically important aminoglycosides (including kanamycin and gentamicin) in both gram-positive and gram-negative bacteria, most notably in Enterococcus species. We have determined the structures of two complexes of APH(2'')-IIa, the binary gentamicin complex and a ternary complex containing adenosine-5'-(beta,gamma-methylene)triphosphate (AMPPCP) and streptomycin.

View Article and Find Full Text PDF

Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2''-phosphotransferase-Ic [APH(2'')-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified.

View Article and Find Full Text PDF