Cell Stress Chaperones
December 2024
Circadian rhythm disruptions have been associated with a wide range of health issues and complications, including an increased risk of circadian rhythm sleep disorders (CRSDs). CRSDs are common among individuals who have been through a traumatic event, particularly in those who have post-traumatic stress disorder (PTSD). Allelic variations in the gene encoding for FK506-binding protein 51 (FKBP51) can increase the susceptibility for PTSD and other stress-related disorders following trauma.
View Article and Find Full Text PDFFKBP51, also known as FK506-binding protein 51, is a molecular chaperone and scaffolding protein with significant roles in regulating hormone signaling and responding to stress. Genetic variants in FKBP5, which encodes FKBP51, have been implicated in a growing number of neuropsychiatric disorders, which has spurred efforts to target FKBP51 therapeutically. However, the molecular mechanisms and sub-anatomical regions influenced by FKBP51 in these disorders are not fully understood.
View Article and Find Full Text PDFThe aberrant accumulation of tau protein is implicated as a pathogenic factor in many neurodegenerative diseases. Tau seeding may underlie its predictable spread in these diseases. Molecular chaperones can modulate tau pathology, but their effects have mainly been studied in isolation.
View Article and Find Full Text PDFACS Chem Biol
May 2023
The accumulation and aggregation of the microtubule-associated protein tau (tau) into intracellular neuronal tangles are a hallmark of a range of progressive neurodegenerative tauopathies, including Alzheimer's disease (AD), frontotemporal dementia, Pick's disease, and progressive supranuclear palsy. The aberrant phosphorylation of tau is associated with tau aggregates in AD. Members of the heat shock protein 70 kDa (Hsp70) family of chaperones bind directly to tau and modulate tau clearance and aggregation.
View Article and Find Full Text PDFFK506 binding protein 51 (FKBP51) is a molecular chaperone that influences stress response. In addition to having an integral role in the regulation of steroid hormone receptors, including glucocorticoid receptor, FKBP51 has been linked with several biological processes including metabolism and neuronal health. Genetic and epigenetic alterations in the gene that encodes FKBP51, FKBP5, are associated with increased susceptibility to multiple neuropsychiatric disorders, which has fueled much of the research on this protein.
View Article and Find Full Text PDFAlzheimer's disease and related tauopathies are characterized by the pathogenic misfolding and aggregation of the microtubule-associated protein tau. Understanding how endogenous chaperones modulate tau misfolding could guide future therapies. Here, we show that the immunophilin FKBP12, the 12-kDa FK506-binding protein (also known as FKBP prolyl isomerase 1A), regulates the neuronal resilience by chaperoning a specific structure in monomeric tau.
View Article and Find Full Text PDFShifts in normal aging set stage for neurodegeneration and dementia affecting 1 in 10 adults. The study demonstrates that lncRNA GAS5 is decreased in aged and Alzheimer's disease brain. The role and targets of lncRNA GAS5 in the aging brain were elucidated using a GAS5-targeting small molecule NPC86, a frontier in lncRNA-targeting therapeutic.
View Article and Find Full Text PDFTauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, and are characterized by intraneuronal tau inclusion in the brain and the patient's cognitive decline with obscure pathogenesis. Heparan sulfate proteoglycans, a major type of extracellular matrix, have been believed to involve in tauopathies. The heparan sulfate proteoglycans co-deposit with tau in Alzheimer's patient brain, directly bind to tau and modulate tau secretion, internalization, and aggregation.
View Article and Find Full Text PDFTauopathies, such as Alzheimer's disease, are characterized by the misfolding and progressive accumulation of the microtubule associated protein tau. Chaperones, tasked with maintaining protein homeostasis, can become imbalanced with age and contribute to the progression of neurodegenerative disease. Cyclophilins are a promising pool of underinvestigated chaperones with peptidyl-prolyl isomerase activity that may play protective roles in regulating tau aggregation.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2022
The coronavirus disease 2019 (COVID-19) pandemic has caused over 600,000,000 infections globally thus far. Up to 30% of individuals with mild to severe disease develop long COVID, exhibiting diverse neurologic symptoms including dementias. However, there is a paucity of knowledge of molecular brain markers and whether these can precipitate the onset of Alzheimer's disease (AD).
View Article and Find Full Text PDFTau accumulation and progressive loss of neurons are associated with Alzheimer's disease (AD). Aggregation of tau has been associated with endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). While ER stress and the UPR have been linked to AD, the contribution of these pathways to tau-mediated neuronal death is still unknown.
View Article and Find Full Text PDFThe microtubule-associated protein tau pathologically accumulates and aggregates in Alzheimer's disease (AD) and other tauopathies, leading to cognitive dysfunction and neuronal loss. Molecular chaperones, like small heat-shock proteins (sHsps), can help deter the accumulation of misfolded proteins, such as tau. Here, we tested the hypothesis that the overexpression of wild-type Hsp22 (wtHsp22) and its phosphomimetic (S24,57D) Hsp22 mutant (mtHsp22) could slow tau accumulation and preserve memory in a murine model of tauopathy, rTg4510.
View Article and Find Full Text PDFBrain Behav Immun Health
December 2020
Early life stress (ELS) adversely affects the brain and is commonly associated with the etiology of mental health disorders, like depression. In addition to the mood-related symptoms, patients with depression show dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, increased peripheral inflammation, and structural brain alterations. Although the underlying causes are unknown, polymorphisms in the FK506-binding protein 5 (FKBP5) gene, a regulator of glucocorticoid receptor (GR) activity, interact with childhood adversities to increase vulnerability to depressive disorders.
View Article and Find Full Text PDFAbnormal accumulation of hyperphosphorylated tau induces pathogenesis in neurodegenerative diseases, like Alzheimer's disease. Molecular chaperones with peptidyl-prolyl cis/trans isomerase (PPIase) activity are known to regulate these processes. Previously, in vitro studies have shown that the 52 kDa FK506-binding protein (FKBP52) interacts with tau inducing its oligomerization and fibril formation to promote toxicity.
View Article and Find Full Text PDFThe microtubule associated protein tau is an intrinsically disordered phosphoprotein that accumulates under pathological conditions leading to formation of neurofibrillary tangles, a hallmark of Alzheimer's disease (AD). The mechanisms that initiate the accumulation of phospho-tau aggregates and filamentous deposits are largely unknown. In the past, our work and others' have shown that molecular chaperones play a crucial role in maintaining protein homeostasis and that imbalance in their levels or activity can drive tau pathogenesis.
View Article and Find Full Text PDFAlzheimer's disease is a progressive fatal neurodegenerative disease with no cure or effective treatments. The hallmarks of disease include extracellular plaques and intracellular tangles of aggregated protein. The intracellular tangles consist of the microtubule associated protein tau.
View Article and Find Full Text PDFTauopathies display a spectrum of phenotypes from cognitive to affective behavioral impairments; however, mechanisms promoting tau pathology and how tau elicits behavioral impairment remain unclear. We report a unique interaction between polyamine metabolism, behavioral impairment, and tau fate. Polyamines are ubiquitous aliphatic molecules that support neuronal function, axonal integrity, and cognitive processing.
View Article and Find Full Text PDFCatalysis of cis/trans isomerization of prolines is important for the activity and misfolding of intrinsically disordered proteins. Catalysis is achieved by peptidylprolyl isomerases, a superfamily of molecular chaperones. Here, we provide atomic insight into a tug-of-war between cis/trans isomerization and molecular chaperone activity.
View Article and Find Full Text PDFMisfolding, aggregation and accumulation of proteins are toxic elements in the progression of a broad range of neurodegenerative diseases. Molecular chaperones enable a cellular defense by reducing or compartmentalizing these insults. Small heat shock proteins (sHsps) engage proteins early in the process of misfolding and can facilitate their proper folding or refolding, sequestration, or clearance.
View Article and Find Full Text PDFHsp90 plays an important role in health and is a therapeutic target for managing misfolding disease. Compounds that disrupt co-chaperone delivery of clients to Hsp90 target a subset of Hsp90 activities, thereby minimizing the toxicity of pan-Hsp90 inhibitors. Here, we have identified SEW04784 as a first-in-class inhibitor of the Aha1-stimulated Hsp90 ATPase activity without inhibiting basal Hsp90 ATPase.
View Article and Find Full Text PDFTau dysfunction is common in several neurodegenerative diseases including Alzheimer's disease (AD) and frontotemporal dementia (FTD). Affective symptoms have often been associated with aberrant tau pathology and are commonly comorbid in patients with tauopathies, indicating a connection between tau functioning and mechanisms of depression. The current study investigated depression-like behavior in mice, which contain a targeted deletion of the gene coding for tau.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2020
Peptidylprolyl isomerases (PPIases) catalyze cis/trans isomerization of prolines. The PPIase CypA colocalizes with the Parkinson's disease (PD)-associated protein α-synuclein in cells and interacts with α-synuclein oligomers. Herein, we describe atomic insights into the molecular details of the α-synuclein/CypA interaction.
View Article and Find Full Text PDFAlzheimer's, Huntington's, and Parkinson's are devastating neurodegenerative diseases that are prevalent in the aging population. Patient care costs continue to rise each year, because there is currently no cure or disease modifying treatments for these diseases. Numerous efforts have been made to understand the molecular interactions governing the disease development.
View Article and Find Full Text PDF