The ability to perform laboratory testing near the patient and with smaller blood volumes would benefit patients and physicians alike. We describe our design of a miniaturized clinical laboratory system with three components: a hardware platform (ie, the miniLab) that performs preanalytical and analytical processing steps using miniaturized sample manipulation and detection modules, an assay-configurable cartridge that provides consumable materials and assay reagents, and a server that communicates bidirectionally with the miniLab to manage assay-specific protocols and analyze, store, and report results (i.e.
View Article and Find Full Text PDFHerpes simplex virus type-2 (HSV-2) specific glycoprotein G (gG-2) is widely used as the antigen of choice for serodiagnosis of HSV-2. In order to develop an ELISA for serodetection of HSV-2 IgG in patient sera, the soluble form of the mature gG-2 antigen (mgG-2), gG283-649, was expressed using a baculovirus expression system. gG283-649 contains the complete extracellular domain of mgG-2 including the C-terminal region, which despite homology to gG-1, does not cross-react with HSV-1 antibodies present in HSV-1 positive patient sera.
View Article and Find Full Text PDFThe design and engineering of innovative biopolymer-based biomaterials for a variety of biomedical applications should be based on the understanding of the relationship between their nanoscale structure and mechanical properties. Down the road, such understanding could be fundamental to tune the properties of engineered tissues, extracellular matrices for cell delivery and proliferation/differentiation, etc. In this tutorial review, we attempt to show in what way biomaterial structural data can help to understand the bulk material properties.
View Article and Find Full Text PDFEnantiomeric biomaterials which are mirror images of each other are characterized by chiral degeneracy--identical structural characteristics and bulk material properties. The addition of another chiral component, D-polysaccharide, has been shown to split such degeneracy and result in two distinct biomaterials. Dynamic oscillatory rheometry and small-angle X-ray scattering demonstrate that the natural biochirality combination of L-peptides and D-polysaccharides assembles faster, has higher elastic moduli (G'), and is structurally more beneficial as opposed to the alternative D-peptide and D-polysaccharide combination.
View Article and Find Full Text PDFThe origin and the effects of homochirality in the biological world continuously stimulate numerous hypotheses and much debate. This work attempts to look at the biohomochirality issue from a different angle-the mechanical properties of the bulk biomaterial and their relation to nanoscale structures. Using a pair of oppositely charged peptides that co-assemble into hydrogels, we systematically investigated the effect of chirality on the mechanical properties of these hydrogels through different combinations of syndiotactic and isotactic peptides.
View Article and Find Full Text PDFBiomacromolecules
February 2013
Oligopeptide hydrogels are emerging as useful matrices for cell culture with commercial products on the market, but L-oligopeptides are labile to proteases. An obvious solution is to create D-oligopeptide hydrogels, which lack enzymatic recognition. However, D-oligopeptide matrices do not support cell growth as well as L-oligopeptide matrices.
View Article and Find Full Text PDFMaking defect-free macromolecules is a challenging issue in chemical synthesis. This challenge is especially pronounced in dendrimer synthesis where exponential growth quickly leads to steric congestion. To overcome this difficulty, proportionate branching in dendrimer growth is proposed.
View Article and Find Full Text PDFBiocompatible and biodegradable peptide hydrogels are drawing increasing attention as prospective materials for human soft tissue repair and replacement. To improve the rather unfavorable mechanical properties of our pure peptide hydrogels, in this work we examined the possibility of creating a double hydrogel network. This network was created by means of the coassembly of mutually attractive, but self-repulsive oligopeptides within an already-existing fibrous network formed by the charged, biocompatible polysaccharides chitosan, alginate, and chondroitin.
View Article and Find Full Text PDFNetworks made from chitosan and alginate have been utilized as prospective tissue engineering scaffolds due to material biocompatibility and degradability. Calcium (Ca(2+) ) is often added to these networks as a modifier for mechanical strength enhancement. In this work, we examined changes in the bulk material properties of different concentrations of chitosan/alginate mixtures (2, 3, or 5% w/w) upon adding another modifier, chondroitin.
View Article and Find Full Text PDF