Publications by authors named "Laura Huopaniemi"

Background: During the course of a bacterial infection, the rapid identification of the causative agent(s) is necessary for the determination of effective treatment options. We have developed a method based on a modified broad-range PCR and an oligonucleotide microarray for the simultaneous detection and identification of 12 bacterial pathogens at the species level. The broad-range PCR primer mixture was designed using conserved regions of the bacterial topoisomerase genes gyrB and parE.

View Article and Find Full Text PDF

Glycosylation of proteins is one of the most crucial post-translational modifications. In order to access system-level and state-dependent data related to the regulation of glycosylation events, we cultivated yeast cell strains each harboring a selected conditional knockdown construct for a gene (either SEC53, VRG4 or DPM1) related to GDP-mannose synthesis or its utilization in glycan biosynthesis. In order to carry this out efficiently, we developed automated sampling from bioreactor cultivations, a collection of in silico workflows for data analysis as well as their integration into a large data warehouse.

View Article and Find Full Text PDF

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessive neurodegenerative disorder caused by mutations in the cystatin B gene (CSTB) that encodes an inhibitor of several lysosomal cathepsins. An unstable expansion of a dodecamer repeat in the CSTB promoter accounts for the majority of EPM1 disease alleles worldwide. We here describe a novel PCR protocol for detection of the dodecamer repeat expansion.

View Article and Find Full Text PDF

Phosphomannose isomerase (PMI40) catalyzes the conversion between fructose 6-phosphate and mannose 6-phosphate and thus connects glycolysis, i.e. energy production and GDP-mannose biosynthesis or cell wall synthesis in Saccharomyces cerevisiae.

View Article and Find Full Text PDF

The de novo synthesis and expression of sulfo sLex glycan on vascular endothelial glycoproteins has a central role in the initiation of inflammatory reactions, serving as a putative ZIP code for organ-specific trafficking of leukocytes into sites of inflammation. The synthesis of sulfo sLex requires energy carrying donors, CMP-sialic acid (CMP-SA), GDP-fucose (GDP-Fuc), and adenosine 3'-phosphate 5'-phosphosulphate (PAPS) for donation of SA, Fuc, and sulfate, respectively. These donors are synthesized in the nucleus or cytosol and translocated into Golgi by specific transporters where corresponding transferase and proteins as well as enzymatic activities increase on inflammatory stimuli.

View Article and Find Full Text PDF

Benzodiazepines are in wide clinical use for their sedative and tranquilizing actions, the former being mediated via alpha1-containing GABAA receptors. The signal transduction pathways elicited beyond the receptor are only poorly understood. Changes of transcript levels in cerebral cortex induced by acute diazepam administration were therefore compared by microarray analysis between wild-type and point mutated alpha1(H101R) mice, in which the alpha1 GABAA receptor subunit had been rendered insensitive to diazepam.

View Article and Find Full Text PDF

In the salvage pathway of GDP-L-fucose, free cytosolic fucose is phosphorylated by L-fucokinase to form L-fucose-L-phosphate, which is then further converted to GDP-L-fucose in the reaction catalyzed by GDP-L-fucose pyrophosphorylase. We report here the cloning and expression of murine L-fucokinase and GDP-L-fucose pyrophosphorylase. Murine L-fucokinase is expressed as two transcripts of 3057 and 3270 base pairs, encoding proteins of 1019 and 1090 amino acids with predicted molecular masses of 111 kDa and 120 kDa respectively.

View Article and Find Full Text PDF