While members of large paralogous protein families share structural features, their functional niches often diverge significantly. Serine protease inhibitors (SERPINs), whose members typically function as covalent inhibitors of serine proteases, are one such family. Plasminogen activator inhibitor-1 (PAI-1) is a prototypic SERPIN, which canonically inhibits tissue-and urokinase-type plasminogen activators (tPA and uPA) to regulate fibrinolysis.
View Article and Find Full Text PDFA key challenge in aging research is extending lifespan in tandem with slowing down functional decline so that life with good health (healthspan) can be extended. Here, we show that monthly clearance, starting from 20 months, of a small number of cells that highly express p21 (p21) improves cardiac and metabolic function and extends both median and maximum lifespans in mice. Importantly, by assessing the health and physical function of these mice monthly until death, we show that clearance of p21 cells improves physical function at all remaining stages of life, suggesting healthspan extension.
View Article and Find Full Text PDFBackground: The ubiquitin regulatory X (UBX) domain-containing proteins (UBXNs) are putative adaptors for ubiquitin ligases and valosin-containing protein; however, their in vivo physiological functions remain poorly characterised. We recently showed that UBXN3B is essential for activating innate immunity to DNA viruses and controlling DNA/RNA virus infection. Herein, we investigate its role in adaptive immunity.
View Article and Find Full Text PDFClearance of senescent cells has demonstrated therapeutic potential in the context of chronic age-related diseases. Little is known, however, how clearing senescent cells affects the ability to respond to an acute infection and form quality immunological memory. We aimed to probe the effects of clearing senescent cells in aged mice on the immune response to influenza (flu) infection.
View Article and Find Full Text PDFLittle is known about the prevalence of cellular senescence among immune cells (i.e., immune cells expressing senescence markers, iSCs) nor is there a gold-standard to efficiently measure iSCs.
View Article and Find Full Text PDFThe geological record encodes the relationship between climate and atmospheric carbon dioxide (CO) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO record spanning the past 66 million years.
View Article and Find Full Text PDFCellular senescence has been implicated in the pathophysiology of many age-related diseases. However, it also plays an important protective role in the context of tumor suppression and wound healing. Reducing senescence burden through treatment with senolytic drugs or the use of genetically targeted models of senescent cell elimination in animals has shown positive results in the context of mitigating disease and age-associated inflammation.
View Article and Find Full Text PDFAge is the greatest risk factor for adverse outcomes following influenza (flu) infection. The increased burden of senescent cells with age has been identified as a root cause in many diseases of aging and targeting these cells with drugs termed senolytics has shown promise in alleviating many age-related declines across organ systems. However, there is little known whether targeting these cells will improve age-related deficits in the immune system.
View Article and Find Full Text PDFClearance of senescent cells has demonstrated therapeutic potential in the context of chronic age-related diseases. Little is known, however, how clearing senescent cells affects the ability to respond to an acute infection and form quality immunological memory. We aimed to probe the effects of clearing senescent cells in aged mice on the immune response to influenza (flu) infection.
View Article and Find Full Text PDFGranzymes are a family of serine-proteases that act as critical mediators in the cytolytic and immunomodulatory activities of immune cells such as CD8 T-cells and natural killer (NK) cells. Previous work indicates that both granzyme B (GZB) and K (GZK) are increased with age in CD8 T-cells, and in the case of GZB, contribute to dysfunctional immune processes observed in older adults. Here, we sought to determine how GZB and GZK expression in NK-cells, and CD4, CD8, and gamma-delta T-cells, quantified in terms of positive cell frequency and mean fluorescence intensity (MFI), differed with age, age-related health-traits and the antibody response to high-dose influenza vaccine.
View Article and Find Full Text PDFOlder adults have diminished immune responses that increase susceptibility to infectious diseases, such as influenza (flu). In older adults, flu infection can lead to hospitalization, catastrophic disability, and mortality. We previously demonstrated severe and prolonged muscle degradation and atrophy in aged mice during flu infection.
View Article and Find Full Text PDFPlasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor superfamily of proteins, is unique among serine protease inhibitors for exhibiting a spontaneous conformational change to a latent or inactive state. The functional half-life for this transition at physiologic temperature and pH is ∼1 to 2 h. To better understand the molecular mechanisms underlying this transition, we now report on the analysis of a comprehensive PAI-1 variant library expressed on filamentous phage and selected for functional stability after 48 h at 37 °C.
View Article and Find Full Text PDFFront Immunol
September 2022
Aging results in systemic changes that leave older adults at much higher risk for adverse outcomes following respiratory infections. Much work has been done over the years to characterize and describe the varied changes that occur with aging from the molecular/cellular up to the organismal level. In recent years, the systemic accumulation of senescent cells has emerged as a key mediator of many age-related declines and diseases of aging.
View Article and Find Full Text PDFInfection with the respiratory pathogen influenza A virus (IAV) causes significant morbidity and mortality each year. While host genotype is thought to contribute to severity of disease, naturally occurring genetic determinants remain mostly unknown. Moreover, more severe disease is seen in women compared with men, but genetic mechanisms underlying this sex difference remain obscure.
View Article and Find Full Text PDFBackground: Biological aging represents a loss of integrity and functionality of physiological systems over time. While associated with an enhanced risk of adverse outcomes such as hospitalization, disability and death following infection, its role in perceived age-related declines in vaccine responses has yet to be fully elucidated. Using data and biosamples from a 4-year clinical trial comparing immune responses of standard- and high-dose influenza vaccination, we quantified biological age (BA) prior to vaccination in adults over 65 years old (n = 292) using a panel of ten serological biomarkers (albumin, alanine aminotransferase, creatinine, ferritin, free thyroxine, cholesterol, high-density lipoprotein, triglycerides, tumour necrosis factor, interleukin-6) as implemented in the BioAge R package.
View Article and Find Full Text PDFBackground: With increasing age, overall health declines while systemic levels of inflammatory mediators tend to increase. Although the underlying mechanisms are poorly understood, there is a wealth of data suggesting that this so-called "inflammaging" contributes to the risk of adverse outcomes in older adults. We sought to determine whether markers of systemic inflammation were associated with antibody responses to the seasonal influenza vaccine.
View Article and Find Full Text PDFAging has emerged as the greatest and most prevalent risk factor for the development of severe COVID-19 infection and death following exposure to the SARS-CoV-2 virus. The presence of multiple co-existing chronic diseases and conditions of aging further enhances this risk. Biological aging not only enhances the risk of chronic diseases, but the presence of such conditions further accelerates varied biological processes or "hallmarks" implicated in aging.
View Article and Find Full Text PDF