Publications by authors named "Laura H Spencer"

Delineating the relative influence of genotype and the environment on DNA methylation is critical for characterizing the spectrum of organism fitness as driven by adaptation and phenotypic plasticity. In this study, we integrated genomic and DNA methylation data for two distinct Olympia oyster (Ostrea lurida) populations while controlling for within-generation environmental influences. In addition to providing the first characterization of genome-wide DNA methylation patterns in the oyster genus Ostrea, we identified 3,963 differentially methylated loci between populations.

View Article and Find Full Text PDF

Invasions by shell-boring polychaetes such as Polydora websteri Hartman have resulted in the collapse of oyster aquaculture industries in Australia, New Zealand, and Hawaii. These worms burrow into bivalve shells, creating unsightly mud blisters that are unappealing to consumers and, when nicked during shucking, release mud and detritus that can foul oyster meats. Recent findings of mud blisters on the shells of Pacific oysters (Crassostrea gigas Thunberg) in Washington State suggest a new spionid polychaete outbreak.

View Article and Find Full Text PDF

Predicting how populations will respond to ocean change across generations is critical to effective conservation of marine species. One emerging factor is the influence of parental exposures on offspring phenotype, known as intergenerational carryover effects. Parental exposure may deliver beneficial or detrimental characteristics to offspring that can influence larval recruitment patterns, thus shaping how populations and community structure respond to ocean change.

View Article and Find Full Text PDF

Pacific geoduck aquaculture is a growing industry, however, little is known about how geoduck respond to varying environmental conditions, or how the industry will fare under projected climate conditions. To understand how geoduck production may be impacted by low pH associated with ocean acidification, multi-faceted environmental heterogeneity needs to be included to understand species and community responses. In this study, eelgrass habitats and environmental heterogeneity across four estuarine bays were leveraged to examine low pH effects on geoduck under different natural regimes, using targeted proteomics to assess physiology.

View Article and Find Full Text PDF