Publications by authors named "Laura Gunsalus"

The investigation of chromatin organization in single cells holds great promise for identifying causal relationships between genome structure and function. However, analysis of single-molecule data is hampered by extreme yet inherent heterogeneity, making it challenging to determine the contributions of individual chromatin fibers to bulk trends. To address this challenge, we propose ChromaFactor, a novel computational approach based on non-negative matrix factorization that deconvolves single-molecule chromatin organization datasets into their most salient primary components.

View Article and Find Full Text PDF

Natural and experimental genetic variants can modify DNA loops and insulating boundaries to tune transcription, but it is unknown how sequence perturbations affect chromatin organization genome wide. We developed a deep-learning strategy to quantify the effect of any insertion, deletion, or substitution on chromatin contacts and systematically scored millions of synthetic variants. While most genetic manipulations have little impact, regions with CTCF motifs and active transcription are highly sensitive, as expected.

View Article and Find Full Text PDF

Comparing chromatin contact maps is an essential step in quantifying how three-dimensional (3D) genome organization shapes development, evolution, and disease. However, no gold standard exists for comparing contact maps, and even simple methods often disagree. In this study, we propose novel comparison methods and evaluate them alongside existing approaches using genome-wide Hi-C data and 22,500 predicted contact maps.

View Article and Find Full Text PDF

Comparing chromatin contact maps is an essential step in quantifying how three-dimensional (3D) genome organization shapes development, evolution, and disease. However, no gold standard exists for comparing contact maps, and even simple methods often disagree. In this study, we propose novel comparison methods and evaluate them alongside existing approaches using genome-wide Hi-C data and 22,500 predicted contact maps.

View Article and Find Full Text PDF

We profile genome-wide histone 3 lysine 27 acetylation (H3K27ac) of 3 major brain cell types from hippocampus and dorsolateral prefrontal cortex (dlPFC) of subjects with and without Alzheimer's Disease (AD). We confirm that single nucleotide polymorphisms (SNPs) associated with late onset AD (LOAD) show a strong tendency to reside in microglia-specific gene regulatory elements. Despite this significant colocalization, we find that microglia harbor more acetylation changes associated with age than with amyloid-β (Aβ) load.

View Article and Find Full Text PDF

Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology.

View Article and Find Full Text PDF

The accurate modeling and prediction of small molecule properties and bioactivities depend on the critical choice of molecular representation. Decades of informatics-driven research have relied on expert-designed molecular descriptors to establish quantitative structure-activity and structure-property relationships for drug discovery. Now, advances in deep learning make it possible to efficiently and compactly molecular representations directly from data.

View Article and Find Full Text PDF