In this paper, a special recurrent neural network (RNN) called is used to design a virtual load sensor that estimates the mass of heavy vehicles. The estimation algorithm consists of a two-layer LSTM network. The network estimates vehicle mass based on vehicle speed, longitudinal acceleration, engine speed, engine torque, and accelerator pedal position.
View Article and Find Full Text PDFFacilitating navigation in pedestrian environments is critical for enabling people who are blind and visually impaired (BVI) to achieve independent mobility. A deep reinforcement learning (DRL)-based assistive guiding robot with ultrawide-bandwidth (UWB) beacons that can navigate through routes with designated waypoints was designed in this study. Typically, a simultaneous localization and mapping (SLAM) framework is used to estimate the robot pose and navigational goal; however, SLAM frameworks are vulnerable in certain dynamic environments.
View Article and Find Full Text PDFIn recent years, we have assisted with an impressive advance in augmented reality systems and computer vision algorithms, based on image processing and artificial intelligence. Thanks to these technologies, mainstream smartphones are able to estimate their own motion in 3D space with high accuracy. In this paper, we exploit such technologies to support the autonomous mobility of people with visual disabilities, identifying pre-defined virtual paths and providing context information, reducing the distance between the digital and real worlds.
View Article and Find Full Text PDFIn this paper, we present a privacy-preserving scheme for Overgrid, a fully distributed peer-to-peer (P2P) architecture designed to automatically control and implement distributed Demand Response (DR) schemes in a community of smart buildings with energy generation and storage capabilities. To monitor the power consumption of the buildings, while respecting the privacy of the users, we extend our previous Overgrid algorithms to provide privacy preserving data aggregation (). This new technique combines a distributed data aggregation scheme with the Secure Multi-Party Computation paradigm.
View Article and Find Full Text PDF