As early as in the acute phase of the coronavirus disease 2019 (COVID-19) pandemic, the research community voiced concerns about the long-term implications of infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), like many other viruses, can trigger chronic disorders that last months or even years. Long COVID, the chronic and persistent disorder lasting more than 12 weeks after the primary infection with SARS-CoV-2, involves a variable number of neurological manifestations, ranging from mild to severe and even fatal.
View Article and Find Full Text PDFApolipoprotein E4 (APOEε4) is the major allelic risk factor for late-onset sporadic Alzheimer's disease (sAD). Inflammation is increasingly considered as critical in sAD initiation and progression. Identifying brain molecular mechanisms that could bridge these two risk factors remain unelucidated.
View Article and Find Full Text PDFBackground: Membrane-type matrix metalloproteinase 5 (MT5-MMP) deficiency in the 5xFAD mouse model of Alzheimer's disease (AD) reduces brain neuroinflammation and amyloidosis, and prevents deficits in synaptic activity and cognition in prodromal stages of the disease. In addition, MT5-MMP deficiency prevents interleukin-1 beta (IL-1β)-mediated inflammation in the peripheral nervous system. In this context, we hypothesized that the MT5-MMP/IL-1β tandem could regulate nascent AD pathogenic events in developing neural cells shortly after the onset of transgene activation.
View Article and Find Full Text PDFFor some time, it has been accepted that the β-site APP cleaving enzyme 1 (BACE1) and the γ-secretase are two main players in the amyloidogenic processing of the β-amyloid precursor protein (APP). Recently, the membrane-type 5 matrix metalloproteinase (MT5-MMP/MMP-24), mainly expressed in the nervous system, has been highlighted as a new key player in APP-processing, able to stimulate amyloidogenesis and also to generate a neurotoxic APP derivative. In addition, the loss of MT5-MMP has been demonstrated to abrogate pathological hallmarks in a mouse model of Alzheimer's disease (AD), thus shedding light on MT5-MMP as an attractive new therapeutic target.
View Article and Find Full Text PDFWe previously discovered the implication of membrane-type 5-matrix metalloproteinase (MT5-MMP) in Alzheimer's disease (AD) pathogenesis. Here, we shed new light on pathogenic mechanisms by which MT5-MMP controls the processing of amyloid precursor protein (APP) and the fate of amyloid beta peptide (Aβ) as well as its precursor C99, and C83. We found in human embryonic kidney cells (HEK) carrying the APP Swedish familial mutation (HEKswe) that deleting the C-terminal non-catalytic domains of MT5-MMP hampered its ability to process APP and release the soluble 95 kDa form (sAPP95).
View Article and Find Full Text PDFProcessing of amyloid beta precursor protein (APP) into amyloid-beta peptide (Aβ) by β-secretase and γ-secretase complex is at the heart of the pathogenesis of Alzheimer's disease (AD). Targeting this proteolytic pathway effectively reduces/prevents pathology and cognitive decline in preclinical experimental models of the disease, but therapeutic strategies based on secretase activity modifying drugs have so far failed in clinical trials. Although this may raise some doubts on the relevance of β- and γ-secretases as targets, new APP-cleaving enzymes, including meprin-β, legumain (δ-secretase), rhomboid-like protein-4 (RHBDL4), caspases and membrane-type matrix metalloproteinases (MT-MMPs/η-secretases) have confirmed that APP processing remains a solid mechanism in AD pathophysiology.
View Article and Find Full Text PDFJ Palliat Care
July 2021
Background: Cancer is a major burden of disease and a public health problem, as it is one of the main causes of morbidity and mortality worldwide. It is estimated that 25% of cancer patients die without receiving proper pain management.
Objective: To acknowledge the epidemiological profile of first-time patients at the palliative care service of a referral center, along with the pharmaceutical treatment and social and familiar implications of the treatment costs in first-time patients.
As life expectancy increases worldwide, age-related neurodegenerative diseases will increase in parallel. The lack of effective treatment strategies may soon lead to an unprecedented health, social and economic crisis. Any attempt to halt the progression of these diseases requires a thorough knowledge of the pathophysiological mechanisms involved to facilitate the identification of new targets and the application of innovative therapeutic strategies.
View Article and Find Full Text PDFWe previously demonstrated that membrane type 1 (MT1) matrix metalloproteinase (MMP) was up-regulated in the hippocampus of the model of transgenic mice bearing 5 familial mutations on human amyloid precursor protein (APP) and presenilin 1 of Alzheimer disease (AD), and that the proteinase increased the levels of amyloid β peptide (Aβ) and its APP C-terminal fragment of 99 aa in a heterologous cell system. Here we provide further evidence that MT1-MMP interacts with APP and promotes amyloidogenesis in a proteolytic-dependent manner in Swedish APP-expressing human embryonic kidney 293 (HEKswe) cells. MT1-MMP-mediated processing of APP releases a soluble APP fragment, sAPP95.
View Article and Find Full Text PDFBackground: Matricaria Chamomilla L. (Mch), popularly known as chamomile, has been used for centuries as an herbolary remedy due to its broad clinical spectrum. The aim of this study was to evaluate the effect of Mch associated to a vehicle with emollient function in induced atopic dermatitis (AD)-like lesions in a murine model.
View Article and Find Full Text PDFWe previously reported that deficiency of membrane-type five matrix metalloproteinase (MT5-MMP) prevents amyloid pathology in the cortex and hippocampus of 5xFAD mice, and ameliorates the functional outcome. We have now investigated whether the integrity of another important area affected in Alzheimer's disease (AD), the frontal cortex, was also preserved upon MT5-MMP deficiency in 4-month old mice at prodromal stages of the pathology. We used the olfactory H-maze (OHM) to show that learning impairment associated with dysfunctions of the frontal cortex in 5xFAD was prevented in bigenic 5xFAD/MT5-MMP mice.
View Article and Find Full Text PDF