The emerging contaminant (EC) perchlorate (ClO), a blasting agent widely used in mining and refining operations, has been used as a practical indicator of mining activities. Widespread occurrence of ECs, such as pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances, and their use as co-tracers of wastewater associated with anthropogenic activities in the urban and Arctic environments have been previously investigated. However, limited studies have reported the occurrence of these ECs and the feasibility of their use as co-tracers of anthropogenic activities in pristine waterbodies (e.
View Article and Find Full Text PDFEmerging contaminants are widely detected and persistent in environmental waters. Advanced oxidation processes are among the most effective methods for removing emerging contaminants from water; however, high energy consumption greatly increases the operating costs and limits large-scale applications. In this study, a passive treatment system consisting of four columns packed with mixtures of silica sand, zero-valent iron (ZVI), biochar (BC), and a mixture of (ZVI + BC) were evaluated for simultaneous removal of eight pharmaceuticals, four artificial sweeteners, and two perfluoroalkyl substances (PFASs) from water.
View Article and Find Full Text PDFDespite the large number of pharmaceutically active compounds found in natural environments little is known about their transport behavior in groundwater, which is complicated by their wide range of physical and chemical properties. The transport behavior of five widely used and often detected pharmaceutical compounds and one lifestyle drug has therefore been investigated, using a set of three column experiments. The investigated compounds were the anticonvulsant carbamazepine, the lifestyle drug caffeine, the antibiotic sulfamethoxazole, the lipid regulator gemfibrozil, and the nonsteroidal anti-inflammatories ibuprofen and naproxen.
View Article and Find Full Text PDFMining-related perchlorate [ClO4(-)] in the receiving environment was investigated at the operating open-pit and underground Diavik diamond mine, Northwest Territories, Canada. Samples were collected over four years and ClO4(-) was measured in various mine waters, the 560 km(2) ultraoligotrophic receiving lake, background lake water and snow distal from the mine. Groundwaters from the underground mine had variable ClO4(-) concentrations, up to 157 μg L(-1), and were typically an order of magnitude higher than concentrations in combined mine waters prior to treatment and discharge to the lake.
View Article and Find Full Text PDF