Publications by authors named "Laura G Caller"

SARS-CoV-2 is notable both for its rapid spread, and for the heterogeneity of its patterns of transmission, with multiple published incidences of superspreading behaviour. Here, we applied a novel network reconstruction algorithm to infer patterns of viral transmission occurring between patients and health care workers (HCWs) in the largest clusters of COVID-19 infection identified during the first wave of the epidemic at Cambridge University Hospitals NHS Foundation Trust, UK. Based upon dates of individuals reporting symptoms, recorded individual locations, and viral genome sequence data, we show an uneven pattern of transmission between individuals, with patients being much more likely to be infected by other patients than by HCWs.

View Article and Find Full Text PDF
Article Synopsis
  • * A study of 1181 SARS-CoV-2 samples shows that 95.1% exhibit noticeable within-host mutations, with unique patterns hinting at RNA damage or editing rather than typical replication errors.
  • * Despite most infections stemming from a single viral lineage, the presence of co-infections and complex mutation patterns can make it challenging to accurately reconstruct transmission histories using these within-host variants.
View Article and Find Full Text PDF

Here, we report the coding-complete genome sequences of nine clinical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and their mutations. The samples were collected from nine Bangladeshi coronavirus disease 2019 (COVID-19) patients. We have identified the E484K escape mutation and the S359T mutation within the spike protein coding region of the sequenced genomes.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study of 1167 residents from 337 care homes, genomic analysis revealed 409 viral clusters, highlighting both internal outbreaks and external introductions of the virus.
  • * Approximately 70% of the residents in the genomic study were hospitalized, creating risks for further transmission, emphasizing the need for strong infection control measures in care homes to lower COVID-19 related deaths.
View Article and Find Full Text PDF

Background: The burden and influence of health-care associated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is unknown. We aimed to examine the use of rapid SARS-CoV-2 sequencing combined with detailed epidemiological analysis to investigate health-care associated SARS-CoV-2 infections and inform infection control measures.

Methods: In this prospective surveillance study, we set up rapid SARS-CoV-2 nanopore sequencing from PCR-positive diagnostic samples collected from our hospital (Cambridge, UK) and a random selection from hospitals in the East of England, enabling sample-to-sequence in less than 24 h.

View Article and Find Full Text PDF

BK polyomavirus (BKPyV) is a small DNA virus that establishes a life-long persistent infection in the urinary tract of most people. BKPyV is known to cause severe morbidity in renal transplant recipients and can lead to graft rejection. The simple 5.

View Article and Find Full Text PDF

BK polyomavirus (BKPyV; hereafter referred to as BK) causes a lifelong chronic infection and is associated with debilitating disease in kidney transplant recipients. Despite its importance, aspects of the virus life cycle remain poorly understood. In addition to the structural proteins, the late region of the BK genome encodes for an auxiliary protein called agnoprotein.

View Article and Find Full Text PDF

BK polyomavirus (BKPyV) is a member of a family of potentially oncogenic viruses, whose reactivation can cause severe pathological conditions in transplant patients, leading to graft rejection. As with many non-enveloped viruses, it is assumed that virus release occurs through lysis of the host cell. We now show the first evidence for a non-lytic release pathway for BKPyV and that this pathway can be blocked by the anion channel inhibitor DIDS.

View Article and Find Full Text PDF