Understanding the structure and function of complex gene regulatory networks using classical genetic assays is an error-prone procedure that frequently generates ambiguous outcomes. Even some of the best-characterized gene networks contain interactions whose validity is not conclusively proven. Founded on dynamic experimental data, mechanistic mathematical models are able to offer detailed insights that would otherwise require prohibitively large numbers of genetic experiments.
View Article and Find Full Text PDFCells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown.
View Article and Find Full Text PDFIn the healthy intestinal mucosa, homeostasis between the immune system and commensal microflora prevents detrimental inflammatory responses. Infection with acute enteropathogens such as Salmonella enterica serovar Typhimurium disturbs this homeostasis and triggers inflammation, but the underlying mechanisms are poorly understood. We found that bacterial delivery or ectopic expression of the S.
View Article and Find Full Text PDF