The eukaryote Tree of Life (eToL) depicts the relationships among all eukaryotic organisms; its root represents the Last Eukaryotic Common Ancestor (LECA) from which all extant complex lifeforms are descended. Locating this root is crucial for reconstructing the features of LECA, both as the endpoint of eukaryogenesis and the start point for the evolution of the myriad complex traits underpinning the diversification of living eukaryotes. However, the position of the root remains contentious due to pervasive phylogenetic artefacts stemming from inadequate evolutionary models, poor taxon sampling and limited phylogenetic signal.
View Article and Find Full Text PDFInterview with Laura Eme, who studies the origin and evolution of eukaryotic cells and microbial diversity at Paris-Saclay University.
View Article and Find Full Text PDFUnderstanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing.
View Article and Find Full Text PDFFew described archaeal, and fewer bacterial, lineages thrive under salt-saturating conditions, such as solar saltern crystallizers (salinity above 30% w/v). They accumulate molar K cytoplasmic concentrations to maintain osmotic balance ('salt-in' strategy) and have proteins adaptively enriched in negatively charged acidic amino acids. Here we analysed metagenomes and metagenome-assembled genomes from geothermally influenced hypersaline ecosystems with increasing chaotropicity in the Danakil Depression.
View Article and Find Full Text PDFIn this perspective, we explore the transformative impact and inherent limitations of metagenomics and single-cell genomics on our understanding of microbial diversity and their integration into the Tree of Life. We delve into the key challenges associated with incorporating new microbial lineages into the Tree of Life through advanced phylogenomic approaches. Additionally, we shed light on enduring debates surrounding various aspects of the microbial Tree of Life, focusing on recent advances in some of its deepest nodes, such as the roots of bacteria, archaea, and eukaryotes.
View Article and Find Full Text PDFExtremely halophilic archaea (Haloarchaea, Nanohaloarchaeota, Methanonatronarchaeia and Halarchaeoplasmatales) thrive in saturating salt concentrations where they must maintain osmotic equilibrium with their environment. The evolutionary history of adaptations enabling salt tolerance remains poorly understood, in particular because the phylogeny of several lineages is conflicting. Here we present a resolved phylogeny of extremely halophilic archaea obtained using improved taxon sampling and state-of-the-art phylogenetic approaches designed to cope with the strong compositional biases of their proteomes.
View Article and Find Full Text PDFThe notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix.
View Article and Find Full Text PDFMantamonads were long considered to represent an "orphan" lineage in the tree of eukaryotes, likely branching near the most frequently assumed position for the root of eukaryotes. Recent phylogenomic analyses have placed them as part of the "CRuMs" supergroup, along with collodictyonids and rigifilids. This supergroup appears to branch at the base of Amorphea, making it of special importance for understanding the deep evolutionary history of eukaryotes.
View Article and Find Full Text PDFAncyromonads are small biflagellated protists with a bean-shaped morphology. They are cosmopolitan in marine, freshwater, and soil environments, where they attach to surfaces while feeding on bacteria. These poorly known grazers stand out by their uncertain phylogenetic position in the tree of eukaryotes, forming a deep-branching "orphan" lineage that is considered key to a better understanding of the early evolution of eukaryotes.
View Article and Find Full Text PDFIn the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches.
View Article and Find Full Text PDFAsgard archaea have recently been identified as the closest archaeal relatives of eukaryotes. Their ecology, and particularly their virome, remain enigmatic. We reassembled and closed the chromosome of Candidatus Odinarchaeum yellowstonii LCB_4, through long-range PCR, revealing CRISPR spacers targeting viral contigs.
View Article and Find Full Text PDFProliferation of selfish genetic elements has led to significant genome size expansion in plastid and mitochondrial genomes of various eukaryotic lineages. Within the red algae, such expansion events are only known in the plastid genomes of the Proteorhodophytina, a highly diverse group of mesophilic microalgae. By contrast, they have never been described in the much understudied red algal mitochondrial genomes.
View Article and Find Full Text PDFPhylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes.
View Article and Find Full Text PDFThe apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups.
View Article and Find Full Text PDFThe transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans.
View Article and Find Full Text PDFThe origin of eukaryotes is a major open question in evolutionary biology. Multiple hypotheses posit that eukaryotes likely evolved from a syntrophic relationship between an archaeon and an alphaproteobacterium based on H exchange. However, there are no strong indications that modern eukaryotic H metabolism originated from archaea or alphaproteobacteria.
View Article and Find Full Text PDFLateral gene transfer (LGT) is well known as an important driver of genome evolution in bacteria and archaea, but its importance in eukaryote evolution has yet to be fully elucidated. There is now abundant evidence indicating that LGT has played a role in the adaptation of eukaryotes to new environments and conditions, including host-parasite interactions. However, the mechanisms and frequency of LGT across the tree of eukaryotes remain poorly understood.
View Article and Find Full Text PDF