Background: The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfield volumes and drivers of atrophy in amnestic EOAD is lacking.
Methods: BioFINDER-2 participants with memory impairment, abnormal amyloid-β status and tau-PET were included.
Background: Episodic memory decline is a hallmark of Alzheimer's disease (AD). Subjective memory complaints (SMCs) may represent one of the earliest signs of impending cognitive decline. The degree to which self- or partner-reported SMCs predict cognitive change remains unclear.
View Article and Find Full Text PDFBackground: Alzheimer's disease is characterized by the accumulation of amyloid-β (Aβ) into plaques, aggregation of tau into neurofibrillary tangles, and neurodegenerative processes including atrophy. However, there is a poorly understood spatial discordance between initial Aβ deposition and local neurodegeneration.
Objective: Here, we test the hypothesis that the cingulum bundle links Aβ deposition in the cingulate cortex to medial temporal lobe (MTL) atrophy.
Hippocampal atrophy is endemic in 'normal aging' but it is unclear what factors drive age-related changes in medial temporal lobe (MTL) structural measures. We investigated cross-sectional (n = 191) and longitudinal (n = 164) MTL atrophy patterns in cognitively normal older adults from ADNI-GO/2 with no to low cerebral β-amyloid and assessed whether white matter hyperintensities (WMHs) and cerebrospinal fluid (CSF) phospho tau (p-tau) levels can explain age-related changes in the MTL. Age was significantly associated with hippocampal volumes and Brodmann Area (BA) 35 thickness, regions affected early by neurofibrillary tangle pathology, in the cross-sectional analysis and with anterior and/or posterior hippocampus, entorhinal cortex and BA35 in the longitudinal analysis.
View Article and Find Full Text PDF