Two poly(3,4-ethylenedioxythiophene) polyrotaxanes (PEDOT∙TMe-βCD and PEDOT∙TMe-γCD) end-capped by pyrene (Py) were synthesized by oxidative polymerization of EDOT encapsulated into TMe-βCD or TMe-γCD cavities with iron (III) chloride (FeCl) in water and chemically characterized. The effect of TMe-βCD or TMe-γCD encapsulation of PEDOT backbones on the molecular weight, thermal stability, and solubility were investigated in depth. UV-vis absorption, fluorescence (F), phosphorescence (P), quantum efficiencies, and lifetimes in water and acetonitrile were also explored, together with their surface morphology and electrical properties.
View Article and Find Full Text PDFWhen studying polyethylenimine derivatives as nonviral vectors for gene delivery, among the important issues to be addressed are high toxicity, low transfection efficiency, and nucleic acid polyplex condensation. The molecular weight of polyethylenimine, PEGylation, biocompatibility and, also, supramolecular structure of potential carrier can all influence the nucleic acid condensation behavior, polyplex size, and transfection efficiency. The main challenge in building an efficient carrier is to find a correlation between the constituent components, as well as the synergy between them, to transport and to release, in a specific manner, different molecules of interest.
View Article and Find Full Text PDF