Development of the complex structure of the vertebrate limb requires carefully orchestrated interactions between multiple regulatory pathways and proteins. Among these, precise regulation of 5' Hox transcription factor expression is essential for proper limb bud patterning and elaboration of distinct limb skeletal elements. Here, we identified Geminin (Gmnn) as a novel regulator of this process.
View Article and Find Full Text PDFExposure to thalidomide during a critical window of development results in limb defects in humans and non-human primates while mice and rats are refractory to these effects. Thalidomide-induced teratogenicity is dependent on its binding to cereblon (CRBN), the substrate receptor of the Cul4A-DDB1-CRBN-RBX1 E3 ubiquitin ligase complex. Thalidomide binding to CRBN elicits subsequent ubiquitination and proteasomal degradation of CRBN neosubstrates including SALL4, a transcription factor of which polymorphisms phenocopy thalidomide-induced limb defects in humans.
View Article and Find Full Text PDFMedulloblastoma is the most common malignant brain cancer of childhood. Further understanding of tumorigenic mechanisms may define new therapeutic targets. Geminin maintains genome fidelity by controlling re-initiation of DNA replication within a cell cycle.
View Article and Find Full Text PDFGeminin is a nucleoprotein that can directly bind chromatin regulatory complexes to modulate gene expression during development. Geminin knockout mouse embryos are preimplantation lethal by the 32-cell stage, precluding in vivo study of Geminin's role in neural development. Therefore, here we used a conditional Geminin allele in combination with several Cre-driver lines to define an essential role for Geminin during mammalian neural tube (NT) formation and patterning.
View Article and Find Full Text PDF