Publications by authors named "Laura E Suarez"

Adaptive cognition relies on cooperation across anatomically distributed brain circuits. However, specialised neural systems are also in constant competition for limited processing resources. How does the brain's network architecture enable it to balance these cooperative and competitive tendencies? Here we use computational whole-brain modelling to examine the dynamical and computational relevance of cooperative and competitive interactions in the mammalian connectome.

View Article and Find Full Text PDF

At this critical juncture in the development of NeuroAI, we outline challenges and training needs of junior researchers working across AI and neuroscience. We also provide advice and resources to help trainees plan their NeuroAI careers.

View Article and Find Full Text PDF

Understanding how different networks relate to each other is key for understanding complex systems. We introduce an intuitive yet powerful framework to disentangle different ways in which networks can be (dis)similar and complementary to each other. We decompose the shortest paths between nodes as uniquely contributed by one source network, or redundantly by either, or synergistically by both together.

View Article and Find Full Text PDF

The connection patterns of neural circuits form a complex network. How signaling in these circuits manifests as complex cognition and adaptive behaviour remains the central question in neuroscience. Concomitant advances in connectomics and artificial intelligence open fundamentally new opportunities to understand how connection patterns shape computational capacity in biological brain networks.

View Article and Find Full Text PDF

Mammalian taxonomies are conventionally defined by morphological traits and genetics. How species differ in terms of neural circuits and whether inter-species differences in neural circuit organization conform to these taxonomies is unknown. The main obstacle to the comparison of neural architectures has been differences in network reconstruction techniques, yielding species-specific connectomes that are not directly comparable to one another.

View Article and Find Full Text PDF

Imaging technologies are increasingly used to generate high-resolution reference maps of brain structure and function. Comparing experimentally generated maps to these reference maps facilitates cross-disciplinary scientific discovery. Although recent data sharing initiatives increase the accessibility of brain maps, data are often shared in disparate coordinate systems, precluding systematic and accurate comparisons.

View Article and Find Full Text PDF

Structure-function relationships are a fundamental principle of many naturally occurring systems. However, network neuroscience research suggests that there is an imperfect link between structural connectivity and functional connectivity in the brain. Here, we synthesize the current state of knowledge linking structure and function in macroscale brain networks and discuss the different types of models used to assess this relationship.

View Article and Find Full Text PDF

The white matter architecture of the brain imparts a distinct signature on neuronal coactivation patterns. Interregional projections promote synchrony among distant neuronal populations, giving rise to richly patterned functional networks. A variety of statistical, communication, and biophysical models have been proposed to study the relationship between brain structure and function, but the link is not yet known.

View Article and Find Full Text PDF

This work presents the simulation results of a novel recurrent, memristive neuromorphic architecture, the MN and explores its computational capabilities in the performance of a temporal pattern recognition task by considering the principles of the reservoir computing approach. A simple methodology based on the definitions of ordered and chaotic dynamical systems was used to determine the separation and fading memory properties of the architecture. The results show the potential use of this architecture as a reservoir for the on-line processing of time-varying inputs.

View Article and Find Full Text PDF