Oxidant injury contributes to acute lung injury (ALI). We previously reported that activation of protein kinase GI (PKGI) posttranscriptionally increased the key antioxidant enzymes catalase and glutathione peroxidase 1 (Gpx-1) and attenuated oxidant-induced cytotoxicity in mouse lung microvascular endothelial cells (MLMVEC). The present studies tested the hypothesis that the antioxidant effect of PKGI is mediated via inhibition of the c-Abl tyrosine kinase.
View Article and Find Full Text PDFSevere malaria can trigger acute lung injury characterized by pulmonary edema resulting from increased endothelial permeability. However, the mechanism through which lung fluid conductance is altered during malaria remains unclear. To define the role that the scavenger receptor CD36 may play in mediating this response, C57BL/6J (WT) and CD36-/- mice were infected with P.
View Article and Find Full Text PDFIncreasing evidence suggests that endothelial cytotoxicity from reactive oxygen species (ROS) contributes to the pathogenesis of acute lung injury. Treatments designed to increase intracellular cGMP attenuate ROS-mediated apoptosis and necrosis in several cell types, but the mechanisms are not understood, and the effect of cGMP on pulmonary endothelial cell death remains controversial. In the current study, increasing intracellular cGMP by either 8pCPT-cGMP (50 microM) or atrial natriuretic peptide (10 nM) significantly attenuated cell death in H(2)O(2)-challenged mouse lung microvascular (MLMVEC) monolayers.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2008
High tidal volume (HV(T)) ventilation causes pulmonary endothelial barrier dysfunction. HV(T) ventilation also increases lung nitric oxide (NO) and cGMP. NO contributes to HV(T) lung injury, but the role of cGMP is unknown.
View Article and Find Full Text PDFIncreased pulmonary endothelial cGMP was shown to prevent endothelial barrier dysfunction through activation of protein kinase G (PKG(I)). Vasodilator-stimulated phosphoprotein (VASP) has been hypothesized to mediate PKG(I) barrier protection because VASP is a cytoskeletal phosphorylation target of PKG(I) expressed in cell-cell junctions. Unphosphorylated VASP was proposed to increase paracellular permeability through actin polymerization and stress fiber bundling, a process inhibited by PKG(I)-mediated phosphorylation of Ser(157) and Ser(239).
View Article and Find Full Text PDF