Publications by authors named "Laura E Mead"

Unlabelled: Although the vasculogenic potential of circulating and cord blood (CB)-derived endothelial colony-forming cells (ECFC) has been demonstrated in vitro and in vivo, little is known about the inherent biologic ability of these cells to home to different organs and contribute to tissue-specific cell populations. Here we used a fetal sheep model of in utero transplantation to investigate and compare the intrinsic ability of human CB-derived ECFC to migrate to the liver and to the intestine, and to define ECFC's intrinsic ability to integrate and contribute to the cytoarchitecture of these same organs. ECFCs were transplanted by an intraperitoneal or intrahepatic route (IH) into fetal sheep at concentrations ranging from 1.

View Article and Find Full Text PDF

Endothelial colony-forming cells (ECFCs) are endothelial progenitor cells that circulate at low concentration in human umbilical cord and adult peripheral blood and are largely resident in blood vessels. ECFCs not only appear to be critical for normal vascular homeostasis and repair but may also contribute to tumor angiogenesis and response to therapy. To begin to characterize the potential role of ECFCs during the treatment of tumors in children and adults with radiation, we characterized the X-ray sensitivity of cord and adult blood-derived ECFCs.

View Article and Find Full Text PDF

Defining whether human circulating proangiogenic cells represent a subset of the hematopoietic system and express CD45 or are hematopoietic derivatives that do not express CD45 (and are called endothelial progenitor cells) remains controversial. We have previously developed a polychromatic flow cytometry (PFC) protocol to isolate subsets of hematopoietic cells and we now identify the circulating pool of CD34(+)CD45(dim) cells representing functional circulating hematopoietic stem and progenitor cells (CHSPCs) that can be separated on the basis of AC133 expression and report that the AC133(+) subset of the CHSPCs enhances the growth of tumor blood vessels in vivo in immunodeficient mice. In addition, the ratio of AC133(+) proangiogenic CHSPCs to AC133(-) nonangiogenic CHSPCs unambiguously correlates with the severity of the clinical state of patients with peripheral arterial disease.

View Article and Find Full Text PDF

Objective: To evaluate whether counts of circulating colony forming unit-endothelial cells (CFU-ECs), cells co-expressing CD34, CD133, and CD31 (CD34+CD133+CD31+), and CD34+CD45- cells are altered in adolescents with type 1 diabetes and if the changes in counts correlate with endothelial dysfunction.

Study Design: Adolescents with diabetes (ages 18 to 22 years) and race- and sex-matched control subjects were studied. We assessed circulating CFU-ECs, using colony assays, and CD34+CD133+CD31+ and CD34+CD45- cells, using poly-chromatic flow cytometry.

View Article and Find Full Text PDF

Cell therapy with endothelial progenitor cells (EPCs) is an emerging therapeutic option to promote angiogenesis or endothelial repair. Although the release of angiogenic paracrine factors is known to contribute to their therapeutic effect, little is known about their release of proinflammatory factors and expression of proinflammatory adhesion molecules. "Early" EPCs and "late" EPCs were isolated from human peripheral blood and their release of chemokines and thromboinflammatory mediators as well as their expression of the proinflammatory adhesion molecules was assessed at baseline and with stimulation.

View Article and Find Full Text PDF

Circulating endothelial progenitor cells (EPCs) in adult human peripheral blood were originally identified in 1997 by Asahara et al., which challenged the paradigm that vasculogenesis is a process restricted to embryonic development. Since their original identification, EPCs have been extensively studied as biomarkers to assess the risk of cardiovascular disease in human subjects and as a potential cell therapeutic for vascular regeneration.

View Article and Find Full Text PDF

Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the NF1 tumor suppressor gene. Neurofibromin is encoded by NF1 and functions as a negative regulator of Ras activity. Somatic mutations in the residual normal NF1 allele within cancers of NF1 patients is consistent with NF1 functioning as a tumor-suppressor.

View Article and Find Full Text PDF

Endothelial progenitor cells (EPCs) are used for angiogenic therapies and as biomarkers of cardiovascular disease. Human umbilical cord blood (UCB) is a rich source of endothelial colony forming cells (ECFCs), which are EPCs with robust proliferative potential that may be useful for clinical vascular regeneration. Previous studies show that hematopoietic progenitor cells are increased in premature UCB compared with term controls.

View Article and Find Full Text PDF

Objective: Emerging data demonstrate that maternal diabetes has long-term health consequences for offspring, including the development of hypertension. In adults, circulating endothelial progenitor cells (EPCs) participate in vascular repair, and EPC numbers and function inversely correlate with the risk of developing vascular disease. Therefore, our objectives were to determine whether hyperglycemia or exposure to a diabetic intrauterine environment alters EPC function.

View Article and Find Full Text PDF

Recent studies have highlighted the importance of paracrine growth factors as mediators of pro-angiogenic effects by endothelial progenitor cells (EPCs), but little is known about the release of lipid-based factors like endocannabinoids by EPCs. In the current study, the release of the endocannabinoids anandamide and 2-arachidonoylglycerol by distinct human EPC sub-types was measured using HPLC/tandem mass-spectrometry. Anandamide release was highest by adult blood colony-forming EPCs at baseline and they also demonstrated increased 2-arachidonoylglycerol release with TNF-alpha stimulation.

View Article and Find Full Text PDF

Objective: Endothelial progenitor cells (EPCs) are used for angiogenic therapies or as biomarkers to assess cardiovascular disease risk. However, there is no uniform definition of an EPC, which confounds EPC studies. EPCs are widely described as cells that coexpress the cell-surface antigens CD34, AC133, and vascular endothelial growth factor receptor-2 (VEGFR-2).

View Article and Find Full Text PDF

Cord blood has served as a source of hematopoietic stem and progenitor cells for successful repopulation of the blood cell system in patients with malignant and nonmalignant disorders. It was information on these rare immature cells in cord blood that led to the first use of cord blood for transplantation. Further information on these cells and how they can be manipulated both in vitro and in vivo will likely enhance the utility and broadness of applicability of cord blood for treatment of human disease.

View Article and Find Full Text PDF

The limited vessel-forming capacity of infused endothelial progenitor cells (EPCs) into patients with cardiovascular dysfunction may be related to a misunderstanding of the biologic potential of the cells. EPCs are generally identified by cell surface antigen expression or counting in a commercially available kit that identifies "endothelial cell colony-forming units" (CFU-ECs). However, the origin, proliferative potential, and differentiation capacity of CFU-ECs is controversial.

View Article and Find Full Text PDF

Endothelial progenitor cells (EPCs) circulate in the peripheral blood and reside in blood vessel walls. A hierarchy of EPCs exists where progenitors can be discriminated based on their clonogenic potential. EPCs are exposed to oxidative stress during vascular injury as residents of blood vessel walls or as circulating cells homing to sites of neovascularization.

View Article and Find Full Text PDF

Genetic inactivation of tumor suppressor genes initiates human cancers. However, interaction of accessory cells with the tumor-initiating cell within the microenvironment is often required for tumor progression. This paradigm is relevant to understanding neurofibroma development in neurofibromatosis type I patients.

View Article and Find Full Text PDF

Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the NF1 tumor suppressor gene. Neurofibromin is encoded by NF1 and functions as a negative regulator of Ras activity. NF1 patients develop renal artery stenosis and arterial occlusions resulting in cerebral and visceral infarcts.

View Article and Find Full Text PDF

Endothelial progenitor cells (EPCs) can be isolated from adult peripheral and umbilical cord blood and expanded exponentially ex vivo. In contrast, human umbilical vein endothelial cells (HUVECs) or human aortic endothelial cells (HAECs) derived from vessel walls are widely considered to be differentiated, mature endothelial cells (ECs). However, similar to adult- and cord blood-derived EPCs, HUVECs and HAECs derived from vessel walls can be passaged for at least 40 population doublings in vitro.

View Article and Find Full Text PDF

Emerging evidence to support the use of endothelial progenitor cells (EPCs) for angiogenic therapies or as biomarkers to assess cardiovascular disease risk and progression is compelling. However, there is no uniform definition of an EPC, which makes interpretation of these studies difficult. Although hallmarks of stem and progenitor cells are their ability to proliferate and to give rise to functional progeny, EPCs are primarily defined by the expression of cell-surface antigens.

View Article and Find Full Text PDF