Publications by authors named "Laura E Luque"

Healthcare waste (HCW) management and segregation are essential to ensure safety, environmental protection and cost control. Poor HCW management increase risks and costs for healthcare institutions. On-going surveillance and training are important to maintain good HCW practices.

View Article and Find Full Text PDF

While the molecular basis of fusion (F) protein refolding during membrane fusion has been studied extensively in vitro, little is known about the biological significance of membrane fusion activity in parainfluenza virus replication and pathogenesis in vivo. Two recombinant Sendai viruses, F-L179V and F-K180Q, were generated that contain F protein mutations in the heptad repeat A region of the ectodomain, a region of the protein known to regulate F protein activation. In vitro, the F-L179V virus caused increased syncytium formation (cell-cell membrane fusion) yet had a rate of replication and levels of F protein expression and cleavage similar to wild-type virus.

View Article and Find Full Text PDF

The human parainfluenza viruses (hPIVs) and respiratory syncytial virus (RSV) are the leading causes of serious respiratory illness in the human pediatric population. Despite decades of research, there are currently no licensed vaccines for either the hPIV or RSV pathogens. Here we describe the testing of hPIV-3 and RSV candidate vaccines using Sendai virus (SeV, murine PIV-1) as a vector.

View Article and Find Full Text PDF

During viral entry, the paramyxovirus fusion (F) protein fuses the viral envelope to a cellular membrane. Similar to other class I viral fusion glycoproteins, the F protein has two heptad repeat regions (HRA and HRB) that are important in membrane fusion and can be targeted by antiviral inhibitors. Upon activation of the F protein, HRA refolds from a spring-loaded, crumpled structure into a coiled coil that inserts a hydrophobic fusion peptide into the target membrane and binds to the HRB helices to form a fusogenic hairpin.

View Article and Find Full Text PDF

To deliver their genetic material into host cells, enveloped viruses have surface glycoproteins that actively cause the fusion of the viral and cellular membranes. Recently determined X-ray crystal structures of the paramyxovirus fusion (F) protein in its pre-fusion and post-fusion conformations reveal the dramatic structural transformation that this protein undergoes while causing membrane fusion. Conformational changes in key regions of the F protein suggest the mechanism by which the F protein is activated and refolds.

View Article and Find Full Text PDF

The inhibitor of apoptosis (IAP) proteins are found in all animals and regulate apoptosis (programmed cell death) by binding and inhibiting caspase proteases. This inhibition is overcome by several apoptosis stimulators, including Drosophila Hid and mammalian Smac/DIABLO, which bind to 65-residue baculovirus IAP repeat (BIR) domains found in one to three copies in all IAPs. Virtually all BIRs contain three Cys and a His that bind zinc, a Gly in a tight turn, and an Arg.

View Article and Find Full Text PDF