Publications by authors named "Laura E Briggs"

Background: The dorsal mesenchymal protrusion (DMP) is a second heart field (SHF) derived tissue involved in cardiac septation. Molecular mechanisms controlling SHF/DMP development include the Bone Morphogenetic Protein and Wnt/β-catenin signaling pathways. Reduced expression of components in these pathways leads to inhibition of proliferation of the SHF/DMP precursor population and failure of the DMP to develop.

View Article and Find Full Text PDF

Background: Heterozygous human mutations of NKX2-5 are highly penetrant and associated with varied congenital heart defects. The heterozygous knockout of murine Nkx2-5, in contrast, manifests less profound cardiac malformations, with low disease penetrance. We sought to study this apparent discrepancy between human and mouse genetics.

View Article and Find Full Text PDF

Rationale: The dorsal mesenchymal protrusion (DMP) is a prong of mesenchyme derived from the second heart field (SHF) located at the venous pole of the developing heart. Recent studies have shown that perturbation of its development is associated with the pathogenesis of atrioventricular (AV) septal defect. Although the importance of the DMP to AV septation is now established, the molecular and cellular mechanisms underlying its development are far from fully understood.

View Article and Find Full Text PDF

Background: Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress.

View Article and Find Full Text PDF

Partitioning of the four-chambered heart requires the proper formation, interaction and fusion of several mesenchymal tissues derived from different precursor populations that together form the atrioventricular mesenchymal complex. This includes the major endocardial cushions and the mesenchymal cap of the septum primum, which are of endocardial origin, and the dorsal mesenchymal protrusion (DMP), which is derived from the Second Heart Field. Failure of these structures to develop and/or fully mature results in atrial septal defects (ASDs) and atrioventricular septal defects (AVSD).

View Article and Find Full Text PDF

The importance of the epicardium for myocardial and valvuloseptal development has been well established; perturbation of epicardial development results in cardiac abnormalities, including thinning of the ventricular myocardial wall and malformations of the atrioventricular valvuloseptal complex. To determine the spatiotemporal contribution of epicardially derived cells to the developing fibroblast population in the heart, we have used a mWt1/IRES/GFP-Cre mouse to trace the fate of EPDCs from embryonic day (ED)10 until birth. EPDCs begin to populate the compact ventricular myocardium around ED12.

View Article and Find Full Text PDF

Atrial natriuretic factor (ANF) is abundantly expressed in atrial cardiomyocytes throughout ontogeny and in ventricular cardiomyocytes in the developing heart. However, during cardiac failure and hypertrophy, ANF expression can reappear in adult ventricular cardiomyocytes. The transcription factor Nkx2-5 is one of the major transactivators of the ANF gene in the developing heart.

View Article and Find Full Text PDF

Mutations in homeoprotein NKX2-5 are linked to human congenital heart disease, resulting in various cardiac anomalies, as well as in postnatal progressive conduction defects and occasional left ventricular dysfunction; yet the function of Nkx2-5 in the postnatal period is largely unexplored. In the heart, the majority of cardiomyocytes are believed to complete cell-cycle withdrawal shortly after birth, which is generally accompanied by a re-organization of chromatin structure shown in other tissues. We reasoned that the effects of the loss of Nkx2-5 in mice may be different after cell-cycle withdrawal compared with those of the perinatal loss of Nkx2-5, which results in rapid conduction and contraction defects within 4 days after the deletion of Nkx2-5 alleles (Circ Res.

View Article and Find Full Text PDF

Carbanion-mediated general regioselective routes to acridones 4 (Table 2) and dibenzo[b,f]azepinones 20 (Table 4) are described. Buchwald-Hartwig C-N cross coupling of o-halo benzamides 1 with anilines 2 or 16, followed by simple N-methylation, dependably provides N-methyl diarylamines 3 (Table 1) and 18 (Table 3). Upon treatment with LDA, 3 and 18 are converted into acridones 4 and dibenzo[b,f]azepinones 20, respectively, in good to excellent yields with regioselectivity which depends upon the presence or absence of directed metalation groups (DMGs).

View Article and Find Full Text PDF

Homeobox transcription factor Nkx2-5, highly expressed in heart, is a critical factor during early embryonic cardiac development. In this study, using tamoxifen-inducible Nkx2-5 knockout mice, we demonstrate the role of Nkx2-5 in conduction and contraction in neonates within 4 days after perinatal tamoxifen injection. Conduction defect was accompanied by reduction in ventricular expression of the cardiac voltage-gated Na+ channel pore-forming alpha-subunit (Na(v)1.

View Article and Find Full Text PDF

Two myosin light chain (MLC) kinase (MLCK) proteins, smooth muscle (encoded by mylk1 gene) and skeletal (encoded by mylk2 gene) MLCK, have been shown to be expressed in mammals. Even though phosphorylation of its putative substrate, MLC2, is recognized as a key regulator of cardiac contraction, a MLCK that is preferentially expressed in cardiac muscle has not yet been identified. In this study, we characterized a new kinase encoded by a gene homologous to mylk1 and -2, named cardiac MLCK, which is specifically expressed in the heart in both atrium and ventricle.

View Article and Find Full Text PDF